

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 1 of 73
Last Modified on 12/01/066:56 AM

Potential trips/traps in SCJP exam:

• Two public classes in the same file.

• Main method calling a non-static method.

• Methods with the same name as the constructor(s).

• Thread initiation with classes that dont have a run() method.

• Local inner classes trying to access non-final vars.

• Case statements with values out of permissible range.

• Math class being an option for immutable classes !!

• instanceOf is not same as instanceof

• Private constructors

• An assignment statement which looks like a comparison if (a=true)...

• System.exit() in try-catch-finally blocks.

• Uninitialized variable references with no path of proper initialization.

• Order of try-catch-finally blocks matters.

• main() can be declared final.

• -0.0 == 0.0 is true.

• A class without abstract methods can still be declared abstract.

• RandomAccessFile descends from Object and implements DataInput and

DataOutput.

• Map doesnot implement Collection.

• Dictionary is a class, not an interface.

• Collection is an Interface where as Collections is a helper class.

• Class declarations can come in any order (derived first, base next etc.).

• Forward references to variables gives compiler error.

• Multi dimensional arrays can be sparce ie., if you imagine the array as a matrix,

every row need not have the same number of columns.

• Arrays, whether local or class-level, are always initialized,

• Strings are initialized to null, not empty string.

• An empty string is NOT the same as a null string.

• A declaration cannot be labelled.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 2 of 73
Last Modified on 12/01/066:56 AM

• continue must be in a loop(for, do , while). It cannot appear in case constructs.

• Primitive array types can never be assigned to each other, eventhough the

primitives themselves can be assigned. ie., ArrayofLongPrimitives =

ArrayofIntegerPrimitives gives compiler error eventhough longvar = intvar is

perfectly valid.

• A constructor can throw any exception.

• Initilializer blocks are executed in the order of declaration.

• Instance initializer(s) gets executed ONLY IF the objects are constructed.

• All comparisons involving NaN and a non-Nan would always result false.

• Default type of a numeric literal with a decimal point is double.

• integer (and long) operations / and % can throw ArithmeticException while float

/ and % will never, even in case of division by zero.

• == gives compiler error if the operands are cast-incompatible.

• You can never cast objects of sibling classes(sharing the same parent), even with

an explicit cast.

• .equals returns false if the object types are different.It does not raise a compiler

error.

• No inner class can have a static member.

• File class has NO methods to deal with the contents of the file.

• InputStream and OutputStream are abstract classes, while DataInput and

DataOutput are interfaces.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 3 of 73
Last Modified on 12/01/066:56 AM

Chapter 1 Language Fundamentals

1. Source file’s elements (in order)

a. Package declaration

b. Import statements

c. Class definitions

2. Importing packages doesn’t recursively import sub-packages.

3. Sub-packages are really different packages, happen to live within an enclosing

package. Classes in sub-packages cannot access classes in enclosing package with

default access.

4. Comments can appear anywhere. Can’t be nested.(No matter what type of comments)

5. At most one public class definition per file. This class name should match the file

name. If there are more than one public class definitions, compiler will accept the

class with the file’s name and give an error at the line where the other class is defined.

6. It’s not required having a public class definition in a file. Strange, but true. ☺ In this

case, the file’s name should be different from the names of classes and interfaces (not

public obviously).

7. Even an empty file is a valid source file.

8. An identifier must begin with a letter, dollar sign ($) or underscore (_). Subsequent

characters may be letters, $, _ or digits.

9. An identifier cannot have a name of a Java keyword. Embedded keywords are OK.

true, false and null are literals (not keywords), but they can’t be used as identifiers as

well.

10. const and goto are reserved words, but not used.

11. Unicode characters can appear anywhere in the source code. The following code is

valid.

 ch\u0061r a = 'a';

 char \u0062 = 'b';

 char c = '\u0063';

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 4 of 73
Last Modified on 12/01/066:56 AM

12. Java has 8 primitive data types.

Data

Type

Size

(bits)

Initial

Value

Min Value Max Value

boolean 1 False false true

byte 8 0 -128 (-27) 127 (27 – 1)

short 16 0 -215 215 - 1

char 16 ‘\u0000’ ‘\u0000’

(0)

‘\uFFFF’ (216 – 1)

int 32 0 -231 231 - 1

long 64 0L -263 263 - 1

float 32 0.0F 1.4E-45 3.4028235E38

double 64 0.0 4.9E-324 1.7976931348623157

E308

13. All numeric data types are signed. char is the only unsigned integral type.

14. Object reference variables are initialized to null.

15. Octal literals begin with zero. Hex literals begin with 0X or 0x.

16. Char literals are single quoted characters or unicode values (begin with \u).

17. A number is by default an int literal, a decimal number is by default a double literal.

18. 1E-5d is a valid double literal, E2d is not (since it starts with a letter, compiler thinks

that it’s an identifier)

19. Two types of variables.

1. Member variables

• Accessible anywhere in the class.

• Automatically initialized before invoking any constructor.

• Static variables are initialized at class load time.

• Can have the same name as the class.

2. Automatic variables(method local)

• Must be initialized explicitly. (Or, compiler will catch it.) Object references

can be initialized to null to make the compiler happy. The following code

won’t compile. Specify else part or initialize the local variable explicitly.

public String testMethod (int a) {

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 5 of 73
Last Modified on 12/01/066:56 AM

String tmp;

if (a > 0) tmp = “Positive”;

return tmp;

}

• Can have the same name as a member variable, resolution is based on scope.

20. Arrays are Java objects. If you create an array of 5 Strings, there will be 6 objects

created.

21. Arrays should be

1. Declared. (int[] a; String b[]; Object []c; Size should not

be specified now)

2. Allocated (constructed). (a = new int[10]; c = new

String[arraysize])

3. Initialized. for (int i = 0; i < a.length; a[i++] = 0)

22. The above three can be done in one step.

int a[] = { 1, 2, 3 }; (or)

int a[] = new int[] { 1, 2, 3 }; But never specify the size with

the new statement.

23. Java arrays are static arrays. Size has to be specified at compile time. Array.length

returns array’s size. (Use Vectors for dynamic purposes).

24. Array size is never specified with the reference variable, it is always maintained with

the array object. It is maintained in array.length, which is a final instance variable.

25. Anonymous arrays can be created and used like this: new int[] {1,2,3} or new int[10]

26. Arrays with zero elements can be created. args array to the main method will be a

zero element array if no command parameters are specified. In this case args.length is

0.

27. Comma after the last initializer in array declaration is ignored.

 int[] i = new int[2] { 5, 10}; // Wrong

int i[5] = { 1, 2, 3, 4, 5}; // Wrong

int[] i[] = {{}, new int[] {} }; // Correct

int i[][] = { {1,2}, new int[2] }; // Correct

int i[] = { 1, 2, 3, 4, } ; // Correct

28. Array indexes start with 0. Index is an int data type.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 6 of 73
Last Modified on 12/01/066:56 AM

29. Square brackets can come after datatype or before/after variable name. White spaces

are fine. Compiler just ignores them.

30. Arrays declared even as member variables also need to be allocated memory

explicitly.

static int a[];

static int b[] = {1,2,3};

public static void main(String s[]) {

 System.out.println(a[0]); // Throws a null

pointer exception

 System.out.println(b[0]); // This code runs fine

 System.out.println(a); // Prints ‘null’

 System.out.println(b); // Prints a string which

is returned by toString

}

31. Once declared and allocated (even for local arrays inside methods), array elements

are automatically initialized to the default values.

32. If only declared (not constructed), member array variables default to null, but local

array variables will not default to null.

33. Java doesn’t support multidimensional arrays formally, but it supports arrays of

arrays. From the specification - “The number of bracket pairs indicates the depth of

array nesting.” So this can perform as a multidimensional array. (no limit to levels of

array nesting)

34. In order to be run by JVM, a class should have a main method with the following

signature.

public static void main(String args[])

static public void main(String[] s)

35. args array’s name is not important. args[0] is the first argument. args.length gives no.

of arguments.

36. main method can be overloaded.

37. main method can be final.

38. A class with a different main signature or w/o main method will compile. But throws

a runtime error.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 7 of 73
Last Modified on 12/01/066:56 AM

39. A class without a main method can be run by JVM, if its ancestor class has a main

method. (main is just a method and is inherited)

40. Primitives are passed by value.

41. Objects (references) are passed by reference. The object reference itself is passed by

value. So, it can’t be changed. But, the object can be changed via the reference.

42. Garbage collection is a mechanism for reclaiming memory from objects that are no

longer in use, and making the memory available for new objects.

43. An object being no longer in use means that it can’t be referenced by any ‘active’ part

of the program.

44. Garbage collection runs in a low priority thread. It may kick in when memory is too

low. No guarantee.

45. It’s not possible to force garbage collection. Invoking System.gc may start garbage

collection process.

46. The automatic garbage collection scheme guarantees that a reference to an object is

always valid while the object is in use, i.e. the object will not be deleted leaving the

reference “dangling”.

47. There are no guarantees that the objects no longer in use will be garbage collected

and their finalizers executed at all. gc might not even be run if the program execution

does not warrant it. Thus any memory allocated during program execution might

remain allocated after program termination, unless reclaimed by the OS or by other

means.

48. There are also no guarantees on the order in which the objects will be garbage

collected or on the order in which the finalizers are called. Therefore, the program

should not make any decisions based on these assumptions.

49. An object is only eligible for garbage collection, if the only references to the object

are from other objects that are also eligible for garbage collection. That is, an object

can become eligible for garbage collection even if there are references pointing to the

object, as long as the objects with the references are also eligible for garbage

collection.

50. Circular references do not prevent objects from being garbage collected.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 8 of 73
Last Modified on 12/01/066:56 AM

51. We can set the reference variables to null, hinting the gc to garbage collect the objects

referred by the variables. Even if we do that, the object may not be gc-ed if it’s

attached to a listener. (Typical in case of AWT components) Remember to remove

the listener first.

52. All objects have a finalize method. It is inherited from the Object class.

53. finalize method is used to release system resources other than memory. (such as file

handles and network connections) The order in which finalize methods are called may

not reflect the order in which objects are created. Don’t rely on it. This is the

signature of the finalize method.

protected void finalize() throws Throwable { }

In the descendents this method can be protected or public. Descendents can restrict

the exception list that can be thrown by this method.

54. finalize is called only once for an object. If any exception is thrown in finalize, the

object is still eligible for garbage collection (at the discretion of gc)

55. gc keeps track of unreachable objects and garbage-collects them, but an unreachable

object can become reachable again by letting know other objects of its existence from

its finalize method (when called by gc). This ‘resurrection’ can be done only once,

since finalize is called only one for an object.finalize can be called explicitly, but it

does not garbage collect the object.finalize can be overloaded, but only the method

with original finalize signature will be called by gc.

56. finalize is not implicitly chained. A finalize method in sub-class should call finalize in

super class explicitly as its last action for proper functioning. But compiler doesn’t

enforce this check.System.runFinalization can be used to run the finalizers (which

have not been executed before) for the objects eligible for garbage collection.

57. The following table specifies the color coding of javadoc standard. (May be not

applicable to 1.2)

Member Color

Instance method Red

Static method Green

Final variable Blue

Constructor Yellow

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 9 of 73
Last Modified on 12/01/066:56 AM

Chapter 2 Operators and assignments

1. Unary operators.

1.1 Increment and Decrement operators ++ --

We have postfix and prefix notation. In post-fix notation value of the

variable/expression is modified after the value is taken for the execution of

statement. In prefix notation, value of the variable/expression is modified

before the value is taken for the execution of statement.

x = 5; y = 0; y = x++; Result will be x = 6, y = 5

x = 5; y = 0; y = ++x; Result will be x = 6, y = 6

Implicit narrowing conversion is done, when applied to byte, short or char.

1.2 Unary minus and unary plus + -

+ has no effect than to stress positivity.

- negates an expression’s value. (2’s complement for integral expressions)

1.3 Negation !

Inverts the value of a boolean expression.

1.4 Complement ~

Inverts the bit pattern of an integral expression. (1’s complement – 0s to 1s

and 1s to 0s)

Cannot be applied to non-integral types.

1.5 Cast ()

Persuades compiler to allow certain assignments. Extensive checking is done

at compile and runtime to ensure type-safety.

2. Arithmetic operators - *, /, %, +, -

• Can be applied to all numeric types.

• Can be applied to only the numeric types, except ‘+’ – it can be applied to Strings

as well.

• All arithmetic operations are done at least with ‘int’. (If types are smaller,

promotion happens. Result will be of a type at least as wide as the wide type of

operands)

• Accuracy is lost silently when arithmetic overflow/error occurs. Result is a

nonsense value.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 10 of 73
Last Modified on 12/01/066:56 AM

• Integer division by zero throws an exception.

• % - reduce the magnitude of LHS by the magnitude of RHS. (continuous

subtraction)

• % - sign of the result entirely determined by sign of LHS

• 5 % 0 throws an ArithmeticException.

• Floating point calculations can produce NaN (square root of a negative no) or

Infinity (division by zero). Float and Double wrapper classes have named

constants for NaN and infinities.

• NaN’s are non-ordinal for comparisons. x == Float.NaN won’t work. Use

Float.IsNaN(x) But equals method on wrapper objects(Double or Float) with NaN

values compares Nan’s correctly.

• Infinities are ordinal. X == Double.POSITIVE_INFINITY will give expected

result.

• + also performs String concatenation (when any operand in an expression is a

String). The language itself overloads this operator. toString method of non-String

object operands are called to perform concatenation. In case of primitives, a

wrapper object is created with the primitive value and toString method of that

object is called. (“Vel” + 3 will work.)

• Be aware of associativity when multiple operands are involved.

System.out.println(1 + 2 + “3”); // Prints 33

System.out.println(“1” + 2 + 3); // Prints 123

3. Shift operators - <<, >>, >>>

• << performs a signed left shift. 0 bits are brought in from the right. Sign bit

(MSB) is preserved. Value becomes old value * 2 ^ x where x is no of bits shifted.

• >> performs a signed right shift. Sign bit is brought in from the left. (0 if positive,

1 if negative. Value becomes old value / 2 ^ x where x is no of bits shifted. Also

called arithmetic right shift.

• >>> performs an unsigned logical right shift. 0 bits are brought in from the left.

This operator exists since Java doesn’t provide an unsigned data type (except

char). >>> changes the sign of a negative number to be positive. So don’t use it

with negative numbers, if you want to preserve the sign. Also don’t use it with

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 11 of 73
Last Modified on 12/01/066:56 AM

types smaller than int. (Since types smaller than int are promoted to an int before

any shift operation and the result is cast down again, so the end result is

unpredictable.)

• Shift operators can be applied to only integral types.

• -1 >> 1 is –1, not 0. This differs from simple division by 2. We can think of it as

shift operation rounding down.

• 1 << 31 will become the minimum value that an int can represent. (Value

becomes negative, after this operation, if you do a signed right shift sign bit is

brought in from the left and the value remains negative.)

• Negative numbers are represented in two’s complement notation. (Take one’s

complement and add 1 to get two’s complement)

• Shift operators never shift more than the number of bits the type of result can

have. (i.e. int 32, long 64) RHS operand is reduced to RHS % x where x is no of

bits in type of result.

int x;

x = x >> 33; // Here actually what happens is x >> 1

4. Comparison operators – all return boolean type.

4.1 Ordinal comparisons - <, <=, > , >=

• Only operate on numeric types. Test the relative value of the numeric

operands.

• Arithmetic promotions apply. char can be compared to float.

4.2 Object type comparison – instanceof

• Tests the class of an object at runtime. Checking is done at compile and

runtime same as the cast operator.

• Returns true if the object denoted by LHS reference can be cast to RHS

type.

• LHS should be an object reference expression, variable or an array

reference.

• RHS should be a class (abstract classes are fine), an interface or an array

type, castable to LHS object reference. Compiler error if LHS & RHS are

unrelated.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 12 of 73
Last Modified on 12/01/066:56 AM

• Can’t use java.lang.Class or its String name as RHS.

• Returns true if LHS is a class or subclass of RHS class

• Returns true if LHS implements RHS interface.

• Returns true if LHS is an array reference and of type RHS.

• x instanceof Component[] – legal.

• x instanceof [] – illegal. Can’t test for ‘any array of any type’

• Returns false if LHS is null, no exceptions are thrown.

• If x instanceof Y is not allowed by compiler, then Y y = (Y) x is not a

valid cast expression. If x instanceof Y is allowed and returns false, the

above cast is valid but throws a ClassCastException at runtime. If x

instanceof Y returns true, the above cast is valid and runs fine.

4.3 Equality comparisons - ==, !=

• For primitives it’s a straightforward value comparison. (promotions apply)

• For object references, this doesn’t make much sense. Use equals method

for meaningful comparisons. (Make sure that the class implements equals

in a meaningful way, like for X.equals(Y) to be true, Y instance of X must

be true as well)

• For String literals, == will return true, this is because of compiler

optimization.

5. Bit-wise operators - &, ^, |

• Operate on numeric and boolean operands.

• & - AND operator, both bits must be 1 to produce 1.

• | - OR operator, any one bit can be 1 to produce 1.

• ^ - XOR operator, any one bit can be 1, but not both, to produce 1.

• In case of booleans true is 1, false is 0.

• Can’t cast any other type to boolean.

6. Short-circuit logical operators - &&, ||

• Operate only on boolean types.

• RHS might not be evaluated (hence the name short-circuit), if the result can be

determined only by looking at LHS.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 13 of 73
Last Modified on 12/01/066:56 AM

• false && X is always false.

• true || X is always true.

• RHS is evaluated only if the result is not certain from the LHS.

• That’s why there’s no logical XOR operator. Both bits need to be known to

calculate the result.

• Short-circuiting doesn’t change the result of the operation. But side effects might

be changed. (i.e. some statements in RHS might not be executed, if short-circuit

happens. Be careful)

7. Ternary operator

• Format a = x ? b : c ;

• x should be a boolean expression.

• Based on x, either b or c is evaluated. Both are never evaluated.

• b will be assigned to a if x is true, else c is assigned to a.

• b and c should be assignment compatible to a.

• b and c are made identical during the operation according to promotions.

8. Assignment operators.

• Simple assignment =.

• op= calculate and assign operators(extended assignment operators)

• *=, /=, %=, +=, -=

• x += y means x = x + y. But x is evaluated only once. Be aware.

• Assignment of reference variables copies the reference value, not the object body.

• Assignment has value, value of LHS after assignment. So a = b = c = 0 is legal. c

= 0 is executed first, and the value of the assignment (0) assigned to b, then the

value of that assignment (again 0) is assigned to a.

• Extended assignment operators do an implicit cast. (Useful when applied to byte,

short or char)

byte b = 10;

b = b + 10; // Won’t compile, explicit cast

required since the expression evaluates to an int

b += 10; // OK, += does an implicit cast from int

to byte

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 14 of 73
Last Modified on 12/01/066:56 AM

9. General

• In Java, No overflow or underflow of integers happens. i.e. The values wrap

around. Adding 1 to the maximum int value results in the minimum value.

• Always keep in mind that operands are evaluated from left to right, and the

operations are executed in the order of precedence and associativity.

• Unary Postfix operators and all binary operators (except assignment operators)

have left to right assoiciativity.

• All unary operators (except postfix operators), assignment operators, ternary

operator, object creation and cast operators have right to left assoiciativity.

• Inspect the following code.

public class Precedence {

 final public static void main(String args[]) {

 int i = 0;

 i = i++;

 i = i++;

 i = i++;

 System.out.println(i); // prints 0, since =

operator has the lowest precedence.

 int array[] = new int[5];

 int index = 0;

array[index] = index = 3; // 1st element gets

assigned to 3, not the 4th element

 for (int c = 0; c < array.length; c++)

 System.out.println(array[c]);

 System.out.println("index is " + index); //

prints 3

 }

}

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 15 of 73
Last Modified on 12/01/066:56 AM

Type of Operators Operators Associativity

Postfix operators [] . (parameters) ++ -- Left to Right

Prefix Unary operators ++ -- + - ~ ! Right to Left

Object creation and cast new (type) Right to Left

Multiplication/Division/Modu

lus

* / % Left to Right

Addition/Subtraction + - Left to Right

Shift >> >>> << Left to Right

Relational < <= > >= instanceof Left to Right

Equality == != Left to Right

Bit-wise/Boolean AND & Left to Right

Bit-wise/Boolean XOR ^ Left to Right

Bit-wise/Boolean OR | Left to Right

Logical AND (Short-circuit or

Conditional)

&& Left to Right

Logical OR (Short-circuit or

Conditional)

|| Left to Right

Ternary ? : Right to Left

Assignment = += -= *= /= %= <<= >>= >>>= &=

^= |=

Right to Left

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 16 of 73
Last Modified on 12/01/066:56 AM

Chapter 3 Modifiers

1. Modifiers are Java keywords that provide information to compiler about the nature of

the code, data and classes.

2. Access modifiers – public, protected, private

• Only applied to class level variables. Method variables are visible only inside the

method.

• Can be applied to class itself (only to inner classes declared at class level, no such

thing as protected or private top level class)

• Can be applied to methods and constructors.

• If a class is accessible, it doesn’t mean, the members are also accessible.

Members’ accessibility determines what is accessible and what is not. But if the

class is not accessible, the members are not accessible, even though they are

declared public.

• If no access modifier is specified, then the accessibility is default package

visibility. All classes in the same package can access the feature. It’s called as

friendly access. But friendly is not a Java keyword. Same directory is same

package in Java’s consideration.

• ‘private’ means only the class can access it, not even sub-classes. So, it’ll cause

access denial to a sub-class’s own variable/method.

• These modifiers dictate, which classes can access the features. An instance of a

class can access the private features of another instance of the same class.

• ‘protected’ means all classes in the same package (like default) and sub-classes in

any package can access the features. But a subclass in another package can access

the protected members in the super-class via only the references of subclass or its

subclasses. A subclass in the same package doesn’t have this restriction. This

ensures that classes from other packages are accessing only the members that are

part of their inheritance hierarchy.

• Methods cannot be overridden to be more private. Only the direction shown in

following figure is permitted from parent classes to sub-classes.

private � friendly (default) � protected � public

 Parent classes Sub-classes

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 17 of 73
Last Modified on 12/01/066:56 AM

3. final

• final features cannot be changed.

• final classes cannot be sub-classed.

• final variables cannot be changed. (Either a value has to be specified at

declaration or an assignment statement can appear only once).

• final methods cannot be overridden.

• Method arguments marked final are read-only. Compiler error, if trying to assign

values to final arguments inside the method.

• Member variables marked final are not initialized by default. They have to be

explicitly assigned a value at declaration or in an initializer block. Static finals

must be assigned to a value in a static initializer block, instance finals must be

assigned a value in an instance initializer or in every constructor. Otherwise the

compiler will complain.

• Final variables that are not assigned a value at the declaration and method

arguments that are marked final are called blank final variables. They can be

assigned a value at most once.

• Local variables can be declared final as well.

4. abstract

• Can be applied to classes and methods.

• For deferring implementation to sub-classes.

• Opposite of final, final can’t be sub-classed, abstract must be sub-classed.

• A class should be declared abstract,

1. if it has any abstract methods.

2. if it doesn’t provide implementation to any of the abstract methods it inherited

3. if it doesn’t provide implementation to any of the methods in an interface that

it says implementing.

• Just terminate the abstract method signature with a ‘;’, curly braces will give a

compiler error.

• A class can be abstract even if it doesn’t have any abstract methods.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 18 of 73
Last Modified on 12/01/066:56 AM

5. static

• Can be applied to nested classes, methods, variables, free floating code-block

(static initializer)

• Static variables are initialized at class load time. A class has only one copy of

these variables.

• Static methods can access only static variables. (They have no this)

• Access by class name is a recommended way to access static methods/variables.

• Static initializer code is run at class load time.

• Static methods may not be overridden to be non-static.

• Non-static methods may not be overridden to be static.

• Abstract methods may not be static.

• Local variables cannot be declared as static.

• Actually, static methods are not participating in the usual overriding mechanism

of invoking the methods based on the class of the object at runtime. Static method

binding is done at compile time, so the method to be invoked is determined by the

type of reference variable rather than the actual type of the object it holds at

runtime.

Let’s say a sub-class has a static method which ‘overrides’ a static method in a

parent class. If you have a reference variable of parent class type and you assign

a child class object to that variable and invoke the static method, the method

invoked will be the parent class method, not the child class method. The

following code explains this.

public class StaticOverridingTest {

 public static void main(String s[]) {

 Child c = new Child();

 c.doStuff(); // This will invoke

Child.doStuff()

 Parent p = new Parent();

 p.doStuff(); // This will invoke

Parent.doStuff()

 p = c;

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 19 of 73
Last Modified on 12/01/066:56 AM

 p.doStuff(); // This will invoke

Parent.doStuff(), rather than Child.doStuff()

 }

}

class Parent {

 static int x = 100;

 public static void doStuff() {

 System.out.println("In Parent..doStuff");

 System.out.println(x);

 }

}

class Child extends Parent {

 static int x = 200;

 public static void doStuff() {

 System.out.println("In Child..doStuff");

 System.out.println(x);

 }

 }

6. native

• Can be applied to methods only. (static methods also)

• Written in a non-Java language, compiled for a single machine target type.

• Java classes use lot of native methods for performance and for accessing hardware

Java is not aware of.

• Native method signature should be terminated by a ‘;’, curly braces will provide a

compiler error.

• native doesn’t affect access qualifiers. Native methods can be private.

• Can pass/return Java objects from native methods.

• System.loadLibrary is used in static initializer code to load native libraries. If the

library is not loaded when the static method is called, an UnsatisfiedLinkError is

thrown.

7. transient

• Can be applied to class level variables only.(Local variables cannot be declared

transient)

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 20 of 73
Last Modified on 12/01/066:56 AM

• Transient variables may not be final or static.(But compiler allows the declaration,

since it doesn’t do any harm. Variables marked transient are never serialized.

Static variables are not serialized anyway.)

• Not stored as part of object’s persistent state, i.e. not written out during

serialization.

• Can be used for security.

8. synchronized

• Can be applied to methods or parts of methods only.

• Used to control access to critical code in multi-threaded programs.

9. volatile

• Can be applied to variables only.

• Can be applied to static variables.

• Cannot be applied to final variables.

• Declaring a variable volatile indicates that it might be modified asynchronously,

so that all threads will get the correct value of the variable.

• Used in multi-processor environments.

Modifier Cla

ss

Inner classes

(Except local

and

anonymous

classes)

Varia

ble

Metho

d

Construct

or

Free floating Code

block

public Y Y Y Y Y N

protected N Y Y Y Y N

(friendly)

No access

modifier

Y Y (OK for all) Y Y Y N

private N Y Y Y Y N

final Y Y (Except

anonymous

classes)

Y Y N N

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 21 of 73
Last Modified on 12/01/066:56 AM

abstract Y Y (Except

anonymous

classes)

N Y N N

static N Y Y Y N Y (static initializer)

native N N N Y N N

transient N N Y N N N

synchroniz

ed

N N N Y N Y (part of method,

also need to specify

an object on which

a lock should be

obtained)

volatile N N Y N N N

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 22 of 73
Last Modified on 12/01/066:56 AM

Chapter 4 Converting and Casting

Unary Numeric Promotion

Contexts:

• Operand of the unary arithmetic operators + and –

• Operand of the unary integer bit-wise complement operator ~

• During array creation, for example new int[x], where the dimension

expression x must evaluate to an int value.

• Indexing array elements, for example table[‘a’], where the index expression

must evaluate to an int value.

• Individual operands of the shift operators.

Binary numeric promotion

Contexts:

• Operands of arithmetic operators *, / , %, + and –

• Operands of relational operators <, <= , > and >=

• Numeric Operands of equality operators == and !=

• Integer Operands of bit-wise operators &, ^ and |

Conversion of Primitives

1. 3 types of conversion – assignment conversion, method call conversion and

arithmetic promotion

2. boolean may not be converted to/from any non-boolean type.

3. Widening conversions accepted. Narrowing conversions rejected.

4. byte, short can’t be converted to char and vice versa.

5. Arithmetic promotion

5.1 Unary operators

• if the operand is byte, short or char {

convert it to int;

 }

 else {

do nothing; no conversion needed;

}

5.2 Binary operators

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 23 of 73
Last Modified on 12/01/066:56 AM

• if one operand is double {

all double; convert the other operand to double;

 }

 else if one operand is float {

all float; convert the other operand to float;

}

else if one operand is long {

all long; convert the other operand to long;

}

else {

all int; convert all to int;

}

6. When assigning a literal value to a variable, the range of the variable’s data type is

checked against the value of the literal and assignment is allowed or compiler will

produce an error.

char c = 3; // this will compile, even though a numeric literal is by default

an int since the range of char will accept the value

int a = 3;

char d = a; // this won’t compile, since we’re assigning an int to char

char e = -1; // this also won’t compile, since the value is not in the range of

char

float f = 1.3; // this won’t compile, even though the value is within float

range. Here range is not important, but precision is. 1.3 is by default a double, so

a specific cast or f = 1.3f will work.

float f = 1/3; // this will compile, since RHS evaluates to an int.

Float f = 1.0 / 3.0; // this won’t compile, since RHS evaluates to a double.

7. Also when assigning a final variable to a variable, even if the final variable’s data

type is wider than the variable, if the value is within the range of the variable an

implicit conversion is done.

byte b;

final int a = 10;

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 24 of 73
Last Modified on 12/01/066:56 AM

b = a; // Legal, since value of ‘a’ is determinable and within range of b

final int x = a;

b = x; // Legal, since value of ‘x’ is determinable and within range of b

int y;

final int z = y;

b = z; // Illegal, since value of ‘z’ is not determinable

8. Method call conversions always look for the exact data type or a wider one in the

method signatures. They will not do narrowing conversions to resolve methods,

instead we will get a compile error.

Here is the figure of allowable primitive conversion.

byte � short � int � long � float � double

 ↑

 char

Casting of Primitives

9. Needed with narrowing conversions. Use with care – radical information loss. Also

can be used with widening conversions, to improve the clarity of the code.

10. Can cast any non-boolean type to another non-boolean type.

11. Cannot cast a boolean or to a boolean type.

Conversion of Object references

12. Three types of reference variables to denote objects - class, interface or array type.

13. Two kinds of objects can be created – class or array.

14. Two types of conversion – assignment and method call.

15. Permitted if the direction of the conversion is ‘up’ the inheritance hierarchy. Means

that types can be assigned/substituted to only super-types – super-classes or

interfaces. Not the other way around, explicit casting is needed for that.

16. Interfaces can be used as types when declaring variables, so they participate in the

object reference conversion. But we cannot instantiate an interface, since it is abstract

and doesn’t provide any implementation. These variables can be used to hold objects

of classes that implement the interface. The reason for having interfaces as types may

be, I think, several unrelated classes may implement the same interface and if there’s

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 25 of 73
Last Modified on 12/01/066:56 AM

a need to deal with them collectively one way of treating them may be an array of the

interface type that they implement.

17. Primitive arrays can be converted to only the arrays of the same primitive type. They

cannot be converted to another type of primitive array. Only object reference arrays

can be converted / cast.

18. Primitive arrays can be converted to an Object reference, but not to an Object[]

reference. This is because all arrays (primitive arrays and Object[]) are extended from

Object.

Casting of Object references

19. Allows super-types to be assigned to subtypes. Extensive checks done both at

compile and runtime. At compile time, class of the object may not be known, so at

runtime if checks fail, a ClassCastException is thrown.

20. Cast operator, instanceof operator and the == operator behave the same way in

allowing references to be the operands of them. You cannot cast or apply instanceof

or compare unrelated references, sibling references or any incompatible references.

Compile-time Rules

• When old and new types are classes, one class must be the sub-class of the

other.

• When old and new types are arrays, both must contain reference types and it

must be legal to cast between those types (primitive arrays cannot be cast,

conversion possible only between same type of primitive arrays).

• We can always cast between an interface and a non-final object.

Run-time rules

• If new type is a class, the class of the expression being converted must be new

type or extend new type.

• If new type is an interface, the class of the expression being converted must

implement the interface.

An Object reference can be converted to: (java.lang.Object)

• an Object reference

• a Cloneable interface reference, with casting, with runtime check

• any class reference, with casting, with runtime check

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 26 of 73
Last Modified on 12/01/066:56 AM

• any array referenece, with casting, with runtime check

• any interface reference, with casting, with runtime check

A Class type reference can be converted to:

• any super-class type reference, (including Object)

• any sub-class type reference, with casting, with runtime check

• an interface reference, if the class implements that interface

• any interface reference, with casting, with runtime check (except if the class is

final and doesn’t implement the interface)

An Interface reference can be converted to:

• an Object reference

• a super-interface reference

• any interface/class reference with casting, with runtime check (except if the

class is final and doesn’t implement the interface)

A Primitive Array reference can be converted to:

• an Object reference

• a Cloneable interface reference

• a primitive array reference of the same type

An Object Array reference can be converted to:

• an Object reference

• a Cloneable interface reference

• a super-class Array reference, including an Object Array reference

• any sub-class Array reference with casting, with runtime check

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 27 of 73
Last Modified on 12/01/066:56 AM

Chapter 5 Flow Control and Exceptions

• Unreachable statements produce a compile-time error.

while (false) { x = 3; } // won’t compile

for (;false;) { x =3; } // won’t compile

if (false) {x = 3; } // will compile, to provide the ability to

conditionally compile the code.

• Local variables already declared in an enclosing block, therefore visible in a nested

block cannot be re-declared inside the nested block.

• A local variable in a block may be re-declared in another local block, if the blocks are

disjoint.

• Method parameters cannot be re-declared.

1. Loop constructs

• 3 constructs – for, while, do

• All loops are controlled by a boolean expression.

• In while and for, the test occurs at the top, so if the test fails at the first time, body

of the loop might not be executed at all.

• In do, test occurs at the bottom, so the body is executed at least once.

• In for, we can declare multiple variables in the first part of the loop separated by

commas, also we can have multiple statements in the third part separated by

commas.

• In the first section of for statement, we can have a list of declaration statements or

a list of expression statements, but not both. We cannot mix them.

• All expressions in the third section of for statement will always execute, even if

the first expression makes the loop condition false. There is no short –circuit here.

2. Selection Statements

• if takes a boolean arguments. Parenthesis required. else part is optional. else if

structure provides multiple selective branching.

• switch takes an argument of byte, short, char or int.(assignment compatible to int)

• case value should be a constant expression that can be evaluated at compile time.

• Compiler checks each case value against the range of the switch expression’s data

type. The following code won’t compile.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 28 of 73
Last Modified on 12/01/066:56 AM

byte b;

switch (b) {

 case 200: // 200 not in range of byte

 default:

}

• We need to place a break statement in each case block to prevent the execution to

fall through other case blocks. But this is not a part of switch statement and not

enforced by the compiler.

• We can have multiple case statements execute the same code. Just list them one

by one.

• default case can be placed anywhere. It’ll be executed only if none of the case

values match.

• switch can be nested. Nested case labels are independent, don’t clash with outer

case labels.

• Empty switch construct is a valid construct. But any statement within the switch

block should come under a case label or the default case label.

3. Branching statements

• break statement can be used with any kind of loop or a switch statement or just a

labeled block.

• continue statement can be used with only a loop (any kind of loop).

• Loops can have labels. We can use break and continue statements to branch out of

multiple levels of nested loops using labels.

• Names of the labels follow the same rules as the name of the

variables.(Identifiers)

• Labels can have the same name, as long as they don’t enclose one another.

• There is no restriction against using the same identifier as a label and as the name

of a package, class, interface, method, field, parameter, or local variable.

4. Exception Handling

• An exception is an event that occurs during the execution of a program that

disrupts the normal flow of instructions.

• There are 3 main advantages for exceptions:

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 29 of 73
Last Modified on 12/01/066:56 AM

1. Separates error handling code from “regular” code

2. Propagating errors up the call stack (without tedious programming)

3. Grouping error types and error differentiation

• An exception causes a jump to the end of try block. If the exception occurred in a

method called from a try block, the called method is abandoned.

• If there’s a catch block for the occurred exception or a parent class of the

exception, the exception is now considered handled.

• At least one ‘catch’ block or one ‘finally’ block must accompany a ‘try’

statement. If all 3 blocks are present, the order is important. (try/catch/finally)

• finally and catch can come only with try, they cannot appear on their own.

• Regardless of whether or not an exception occurred or whether or not it was

handled, if there is a finally block, it’ll be executed always. (Even if there is a

return statement in try block).

• System.exit() and error conditions are the only exceptions where finally block is

not executed.

• If there was no exception or the exception was handled, execution continues at the

statement after the try/catch/finally blocks.

• If the exception is not handled, the process repeats looking for next enclosing try

block up the call hierarchy. If this search reaches the top level of the hierarchy

(the point at which the thread was created), then the thread is killed and message

stack trace is dumped to System.err.

• Use throw new xxxException() to throw an exception. If the thrown object is null,

a NullPointerException will be thrown at the handler.

• If an exception handler re-throws an exception (throw in a catch block), same

rules apply. Either you need to have a try/catch within the catch or specify the

entire method as throwing the exception that’s being re-thrown in the catch block.

Catch blocks at the same level will not handle the exceptions thrown in a catch

block – it needs its own handlers.

• The method fillInStackTrace() in Throwable class throws a Throwable object. It

will be useful when re-throwing an exception or error.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 30 of 73
Last Modified on 12/01/066:56 AM

• The Java language requires that methods either catch or specify all checked

exceptions that can be thrown within the scope of that method.

• All objects of type java.lang.Exception are checked exceptions. (Except the

classes under java.lang.RuntimeException) If any method that contains lines of

code that might throw checked exceptions, compiler checks whether you’ve

handled the exceptions or you’ve declared the methods as throwing the

exceptions. Hence the name checked exceptions.

• If there’s no code in try block that may throw exceptions specified in the catch

blocks, compiler will produce an error. (This is not the case for super-class

Exception)

• Java.lang.RuntimeException and java.lang.Error need not be handled or declared.

• An overriding method may not throw a checked exception unless the overridden

method also throws that exception or a super-class of that exception. In other

words, an overriding method may not throw checked exceptions that are not

thrown by the overridden method. If we allow the overriding methods in sub-

classes to throw more general exceptions than the overridden method in the parent

class, then the compiler has no way of checking the exceptions the sub-class

might throw. (If we declared a parent class variable and at runtime it refers to sub-

class object) This violates the concept of checked exceptions and the sub-classes

would be able to by-pass the enforced checks done by the compiler for checked

exceptions. This should not be allowed.

Here is the exception hierarchy.

Object

 |

Throwable

 | |

 | |

 | Error

Exception-->ClassNotFoundException, ClassNotSupportedException,

IllegalAccessException, InstantiationException, IterruptedException,

NoSuchMethodException, RuntimeException, AWTException, IOException

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 31 of 73
Last Modified on 12/01/066:56 AM

RuntimeException-->EmptyStackException, NoSuchElementException,

ArithmeticException, ArrayStoreException, ClassCastException,

IllegalArgumentException, IllegalMonitorStateException,

IndexOutOfBoundsException, NegativeArraySizeException, NullPointerException,

SecurityException.

IllegalArgumentException-->IllegalThreadStateException, NumberFormatException

IndexOutOfBoundsException-->ArrayIndexOutOfBoundsException,

StringIndexOutOfBoundsException

IOException-->EOFException, FileNotFoundException, InterruptedIOException,

UTFDataFormatException, MalformedURLException, ProtocolException,

SockException, UnknownHostException, UnknownServiceException.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 32 of 73
Last Modified on 12/01/066:56 AM

Chapter 6 Objects and Classes

Implementing OO relationships

• “is a” relationship is implemented by inheritance (extends keyword)

• “has a” relationship is implemented by providing the class with member

variables.

Overloading and Overriding

• Overloading is an example of polymorphism. (operational / parametric)

• Overriding is an example of runtime polymorphism (inclusive)

• A method can have the same name as another method in the same class,

provided it forms either a valid overload or override

Overloading Overriding

Signature has to be different. Just a

difference in return type is not enough.

Signature has to be the same. (including the

return type)

Accessibility may vary freely. Overriding methods cannot be more private

than the overridden methods.

Exception list may vary freely. Overriding methods may not throw more

checked exceptions than the overridden

methods.

Just the name is reused. Methods are

independent methods. Resolved at

compile-time based on method signature.

Related directly to sub-classing. Overrides

the parent class method. Resolved at run-

time based on type of the object.

Can call each other by providing

appropriate argument list.

Overriding method can call overridden

method by super.methodName(), this can be

used only to access the immediate super-

class’s method. super.super won’t work.

Also, a class outside the inheritance

hierarchy can’t use this technique.

Methods can be static or non-static. Since

the methods are independent, it doesn’t

matter. But if two methods have the same

static methods don’t participate in overriding,

since they are resolved at compile time based

on the type of reference variable. A static

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 33 of 73
Last Modified on 12/01/066:56 AM

signature, declaring one as static and

another as non-static does not provide a

valid overload. It’s a compile time error.

method in a sub-class can’t use ‘super’ (for

the same reason that it can’t use ‘this’ for)

Remember that a static method can’t be

overridden to be non-static and a non-static

method can’t be overridden to be static. In

other words, a static method and a non-static

method cannot have the same name and

signature (if signatures are different, it would

have formed a valid overload)

There’s no limit on number of overloaded

methods a class can have.

Each parent class method may be overridden

at most once in any sub-class. (That is, you

cannot have two identical methods in the

same class)

• Variables can also be overridden, it’s known as shadowing or hiding. But,

member variable references are resolved at compile-time. So at the runtime, if

the class of the object referred by a parent class reference variable, is in fact a

sub-class having a shadowing member variable, only the parent class variable

is accessed, since it’s already resolved at compile time based on the reference

variable type. Only methods are resolved at run-time.

public class Shadow {

 public static void main(String s[]) {

 S1 s1 = new S1();

 S2 s2 = new S2();

 System.out.println(s1.s); // prints S1

 System.out.println(s1.getS()); // prints S1

 System.out.println(s2.s); // prints S2

 System.out.println(s2.getS()); // prints S2

 s1 = s2;

 System.out.println(s1.s); // prints S1, not S2 -

 // since variable is resolved at

compile time

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 34 of 73
Last Modified on 12/01/066:56 AM

 System.out.println(s1.getS()); // prints S2 -

 // since method is resolved at run

time

 }

}

class S1 {

 public String s = "S1";

 public String getS() {

 return s;

 }

}

class S2 extends S1{

 public String s = "S2";

 public String getS() {

 return s;

 }

}

In the above code, if we didn’t have the overriding getS() method in the sub-class

and if we call the method from sub-class reference variable, the method will

return only the super-class member variable value. For explanation, see the

following point.

• Also, methods access variables only in context of the class of the object they

belong to. If a sub-class method calls explicitly a super class method, the

super class method always will access the super-class variable. Super class

methods will not access the shadowing variables declared in subclasses

because they don’t know about them. (When an object is created, instances of

all its super-classes are also created.) But the method accessed will be again

subject to dynamic lookup. It is always decided at runtime which

implementation is called. (Only static methods are resolved at compile-time)

public class Shadow2 {

 String s = "main";

 public static void main(String s[]) {

 S2 s2 = new S2();

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 35 of 73
Last Modified on 12/01/066:56 AM

 s2.display(); // Produces an output – S1, S2

 S1 s1 = new S1();

 System.out.println(s1.getS()); // prints S1

 System.out.println(s2.getS()); // prints S1 – since

super-class method // always accesses super-class variable

 }

}

class S1 {

 String s = "S1";

 public String getS() {

 return s;

 }

 void display() {

 System.out.println(s);

 }

}

class S2 extends S1{

 String s = "S2";

 void display() {

 super.display(); // Prints S1

 System.out.println(s); // prints S2

 }

}

• With OO languages, the class of the object may not be known at compile-time

(by virtue of inheritance). JVM from the start is designed to support OO. So,

the JVM insures that the method called will be from the real class of the

object (not with the variable type declared). This is accomplished by virtual

method invocation (late binding). Compiler will form the argument list and

produce one method invocation instruction – its job is over. The job of

identifying and calling the proper target code is performed by JVM.

• JVM knows about the variable’s real type at any time since when it allocates

memory for an object, it also marks the type with it. Objects always know

‘who they are’. This is the basis of instanceof operator.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 36 of 73
Last Modified on 12/01/066:56 AM

• Sub-classes can use super keyword to access the shadowed variables in super-

classes. This technique allows for accessing only the immediate super-class.

super.super is not valid. But casting the ‘this’ reference to classes up above

the hierarchy will do the trick. By this way, variables in super-classes above

any level can be accessed from a sub-class, since variables are resolved at

compile time, when we cast the ‘this’ reference to a super-super-class, the

compiler binds the super-super-class variable. But this technique is not

possible with methods since methods are resolved always at runtime, and the

method gets called depends on the type of object, not the type of reference

variable. So it is not at all possible to access a method in a super-super-class

from a subclass.

public class ShadowTest {

 public static void main(String s[]){

 new STChild().demo();

 }

}

class STGrandParent {

 double wealth = 50000.00;

 public double getWealth() {

 System.out.println("GrandParent-" +

wealth);

 return wealth;

 }

}

class STParent extends STGrandParent {

 double wealth = 100000.00;

 public double getWealth() {

 System.out.println("Parent-" + wealth);

 return wealth;

 }

}

class STChild extends STParent {

 double wealth = 200000.00;

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 37 of 73
Last Modified on 12/01/066:56 AM

 public double getWealth() {

 System.out.println("Child-" + wealth);

 return wealth;

 }

 public void demo() {

 getWealth(); // Calls Child method

 super.getWealth(); // Calls Parent

method

// Compiler error, GrandParent method

cannot be accessed

 //super.super.getWealth();

 // Calls Child method, due to dynamic

method lookup

((STParent)this).getWealth();

// Calls Child method, due to dynamic

method lookup

 ((STGrandParent)this).getWealth();

 System.out.println(wealth); // Prints

Child wealth

 System.out.println(super.wealth); //

Prints Parent wealth

 // Prints Parent wealth

System.out.println(((STParent)(this)).w

ealth);

// Prints GrandParent wealth

 System.out.println(((STGrandParent)(this)).w

ealth);

}

}

• An inherited method, which was not abstract on the super-class, can be

declared abstract in a sub-class (thereby making the sub-class abstract). There

is no restriction. In the same token, a subclass can be declared abstract

regardless of whether the super-class was abstract or not.

• Private members are not inherited, but they do exist in the sub-classes. Since

the private methods are not inherited, they cannot be overridden. A method in

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 38 of 73
Last Modified on 12/01/066:56 AM

a subclass with the same signature as a private method in the super-class is

essentially a new method, independent from super-class, since the private

method in the super-class is not visible in the sub-class.

public class PrivateTest {

 public static void main(String s[]){

 new PTSuper().hi(); // Prints always Super

 new PTSub().hi(); // Prints Super when subclass

doesn't have hi method

 // Prints Sub when subclass has hi method

 PTSuper sup;

 sup = new PTSub();

 sup.hi(); // Prints Super when subclass doesn't have hi

method

 // Prints Sub when subclass has hi method

 }

}

class PTSuper {

 public void hi() { // Super-class implementation always

calls superclass hello

 hello();

 }

 private void hello() { // This method is not inherited by

subclasses, but exists in them.

// Commenting out both the methods in the subclass show this.

// The test will then print "hello-Super" for all three calls

// i.e. Always the super-class implementations are called

 System.out.println("hello-Super");

 }

}

class PTSub extends PTSuper {

 public void hi() { // This method overrides super-class hi,

calls subclass hello

 try {

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 39 of 73
Last Modified on 12/01/066:56 AM

 hello();

 }

 catch(Exception e) {}

 }

 void hello() throws Exception { // This method is

independent from super-class hello

// Evident from, it's allowed to throw Exception

 System.out.println("hello-Sub");

 }

}

• Private methods are not overridden, so calls to private methods are resolved at

compile time and not subject to dynamic method lookup. See the following

example.

public class Poly {

 public static void main(String args[]) {

 PolyA ref1 = new PolyC();

 PolyB ref2 = (PolyB)ref1;

 System.out.println(ref2.g()); // This prints 1

 // If f() is not private in PolyB, then prints 2

 }

}

class PolyA {

 private int f() { return 0; }

 public int g() { return 3; }

}

class PolyB extends PolyA {

 private int f() { return 1; }

 public int g() { return f(); }

}

class PolyC extends PolyB {

 public int f() { return 2; }

}

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 40 of 73
Last Modified on 12/01/066:56 AM

Constructors and Sub-classing

• Constructors are not inherited as normal methods, they have to be defined in

the class itself.

• If you define no constructors at all, then the compiler provides a default

constructor with no arguments. Even if, you define one constructor, this

default is not provided.

• We can’t compile a sub-class if the immediate super-class doesn’t have a no

argument default constructor, and sub-class constructors are not calling super

or this explicitly (and expect the compiler to insert an implicit super() call)

• A constructor can call other overloaded constructors by ‘this (arguments)’. If

you use this, it must be the first statement in the constructor. This construct

can be used only from within a constructor.

• A constructor can’t call the same constructor from within. Compiler will say ‘

recursive constructor invocation’

• A constructor can call the parent class constructor explicitly by using ‘super

(arguments)’. If you do this, it must be first the statement in the constructor.

This construct can be used only from within a constructor.

• Obviously, we can’t use both this and super in the same constructor. If

compiler sees a this or super, it won’t insert a default call to super().

• Constructors can’t have a return type. A method with a class name, but with a

return type is not considered a constructor, but just a method by compiler.

Expect trick questions using this.

• Constructor body can have an empty return statement. Though void cannot be

specified with the constructor signature, empty return statement is acceptable.

• Only modifiers that a constructor can have are the accessibility modifiers.

• Constructors cannot be overridden, since they are not inherited.

• Initializers are used in initialization of objects and classes and to define

constants in interfaces. These initializers are :

1. Static and Instance variable initializer expressions.

Literals and method calls to initialize variables. Static variables can be

initialized

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 41 of 73
Last Modified on 12/01/066:56 AM

only by static method calls.

Cannot pass on the checked exceptions. Must catch and handle them.

2. Static initializer blocks.

 Used to initialize static variables and load native libraries.

Cannot pass on the checked exceptions. Must catch and handle them.

3. Instance initializer blocks.

 Used to factor out code that is common to all the constructors.

 Also useful with anonymous classes since they cannot have

constructors.

 All constructors must declare the uncaught checked exceptions, if any.

 Instance Initializers in anonymous classes can throw any exception.

• In all the initializers, forward referencing of variables is not allowed. Forward

referencing of methods is allowed.

• Order of code execution (when creating an object) is a bit tricky.

1. static variables initialization.

2. static initializer block execution. (in the order of declaration, if multiple

blocks found)

3. constructor header (super or this – implicit or explicit)

4. instance variables initialization / instance initializer block(s) execution

5. rest of the code in the constructor

Interfaces

• All methods in an interface are implicitly public, abstract, and never static.

• All variables in an interface are implicitly static, public, final. They cannot be

transient or volatile. A class can shadow the variables it inherits from an

interface, with its own variables.

• A top-level interface itself cannot be declared as static or final since it doesn’t

make sense.

• Declaring parameters to be final is at method’s discretion, this is not part of

method signature.

• Same case with final, synchronized, native. Classes can declare the methods to

be final, synchronized or native whereas in an interface they cannot be

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 42 of 73
Last Modified on 12/01/066:56 AM

specified like that. (These are implementation details, interface need not worry

about this)

• But classes cannot implement an interface method with a static method.

• If an interface specifies an exception list for a method, then the class

implementing the interface need not declare the method with the exception

list. (Overriding methods can specify sub-set of overridden method’s

exceptions, here none is a sub-set). But if the interface didn’t specify any

exception list for a method, then the class cannot throw any exceptions.

• All interface methods should have public accessibility when implemented in

class.

• Interfaces cannot be declared final, since they are implicitly abstract.

• A class can implement two interfaces that have a method with the same

signature or variables with the same name.

Inner Classes

• A class can be declared in any scope. Classes defined inside of other classes

are known as nested classes. There are four categories of nested classes.

1. Top-level nested classes / interfaces

• Declared as a class member with static modifier.

• Just like other static features of a class. Can be accessed / instantiated

without an instance of the outer class. Can access only static members of

outer class. Can’t access instance variables or methods.

• Very much like any-other package level class / interface. Provide an

extension to packaging by the modified naming scheme at the top level.

• Classes can declare both static and non-static members.

• Any accessibility modifier can be specified.

• Interfaces are implicitly static (static modifier also can be specified). They

can have any accessibility modifier. There are no non-static inner, local or

anonymous interfaces.

2. Non-static inner classes

• Declared as a class member without static.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 43 of 73
Last Modified on 12/01/066:56 AM

• An instance of a non-static inner class can exist only with an instance of

its enclosing class. So it always has to be created within a context of an

outer instance.

• Just like other non-static features of a class. Can access all the features

(even private) of the enclosing outer class. Have an implicit reference to

the enclosing instance.

• Cannot have any static members.

• Can have any access modifier.

3. Local classes

• Defined inside a block (could be a method, a constructor, a local block, a

static initializer or an instance initializer). Cannot be specified with static

modifier.

• Cannot have any access modifier (since they are effectively local to the

block)

• Cannot declare any static members.(Even declared in a static context)

• Can access all the features of the enclosing class (because they are defined

inside the method of the class) but can access only final variables defined

inside the method (including method arguments). This is because the class

can outlive the method, but the method local variables will go out of scope

– in case of final variables, compiler makes a copy of those variables to be

used by the class. (New meaning for final)

• Since the names of local classes are not visible outside the local context,

references of these classes cannot be declared outside. So their

functionality could be accessed only via super-class references (either

interfaces or classes). Objects of those class types are created inside

methods and returned as super-class type references to the outside world.

This is the reason that they can only access final variables within the local

block. That way, the value of the variable can be always made available to

the objects returned from the local context to outside world.

• Cannot be specified with static modifier. But if they are declared inside a

static context such as a static method or a static initializer, they become

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 44 of 73
Last Modified on 12/01/066:56 AM

static classes. They can only access static members of the enclosing class

and local final variables. But this doesn’t mean they cannot access any

non-static features inherited from super classes. These features are their

own, obtained via the inheritance hierarchy. They can be accessed

normally with ‘this’ or ‘super’.

4. Anonymous classes

• Anonymous classes are defined where they are constructed. They can be

created wherever a reference expression can be used.

• Anonymous classes cannot have explicit constructors. Instance initializers

can be used to achieve the functionality of a constructor.

• Typically used for creating objects on the fly.

• Anonymous classes can implement an interface (implicit extension of

Object) or explicitly extend a class. Cannot do both.

Syntax: new interface name() { } or new class name() { }

• Keywords implements and extends are not used in anonymous classes.

• Abstract classes can be specified in the creation of an anonymous class.

The new class is a concrete class, which automatically extends the abstract

class.

• Discussion for local classes on static/non-static context, accessing

enclosing variables, and declaring static variables also holds good for

anonymous classes. In other words, anonymous classes cannot be

specified with static, but based on the context, they could become static

classes. In any case, anonymous classes are not allowed to declare static

members. Based on the context, non-static/static features of outer classes

are available to anonymous classes. Local final variables are always

available to them.

• One enclosing class can have multiple instances of inner classes.

• Inner classes can have synchronous methods. But calling those methods

obtains the lock for inner object only not the outer object. If you need to

synchronize an inner class method based on outer object, outer object lock

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 45 of 73
Last Modified on 12/01/066:56 AM

must be obtained explicitly. Locks on inner object and outer object are

independent.

• Nested classes can extend any class or can implement any interface. No

restrictions.

• All nested classes (except anonymous classes) can be abstract or final.

• Classes can be nested to any depth. Top-level static classes can be nested only

within other static top-level classes or interfaces. Deeply nested classes also

have access to all variables of the outer-most enclosing class (as well the

immediate enclosing class’s)

• Member inner classes can be forward referenced. Local inner classes cannot

be.

• An inner class variable can shadow an outer class variable. In this case, an

outer class variable can be referred as (outerclassname.this.variablename).

• Outer class variables are accessible within the inner class, but they are not

inherited. They don’t become members of the inner class. This is different

from inheritance. (Outer class cannot be referred using ‘super’, and outer class

variables cannot be accessed using ‘this’)

• An inner class variable can shadow an outer class variable. If the inner class is

sub-classed within the same outer class, the variable has to be qualified

explicitly in the sub-class. To fully qualify the variable, use

classname.this.variablename. If we don’t correctly qualify the variable, a

compiler error will occur. (Note that this does not happen in multiple levels of

inheritance where an upper-most super-class’s variable is silently shadowed

by the most recent super-class variable or in multiple levels of nested inner

classes where an inner-most class’s variable silently shadows an outer-most

class’s variable. Problem comes only when these two hierarchy chains

(inheritance and containment) clash.)

• If the inner class is sub-classed outside of the outer class (only possible with

top-level nested classes) explicit qualification is not needed (it becomes

regular class inheritance)

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 46 of 73
Last Modified on 12/01/066:56 AM

// Example 1

public class InnerInnerTest {

 public static void main(String s[]) {

 new Outer().new Inner().new InnerInner().new

InnerInnerInner().doSomething();

 new Outer().new InnerChild().doSomething();

 new Outer2().new Inner2().new InnerInner2().doSomething();

 new InnerChild2().doSomething();

 }

}

class Outer {

 String name = "Vel";

 class Inner {

 String name = "Sharmi";

 class InnerInner {

 class InnerInnerInner {

 public void doSomething() {

 // No problem in accessing without full qualification,

 // inner-most class variable shadows the outer-most class

variable

 System.out.println(name); // Prints "Sharmi"

 System.out.println(Outer.this.name); // Prints "Vel", explicit

reference to Outer

// error, variable is not inherited from the outer class, it can be just

accessible

// System.out.println(this.name);

// System.out.println(InnerInner.this.name);

// System.out.println(InnerInnerInner.this.name);

// error, super cannot be used to access outer class.

// super will always refer the parent, in this case Object

// System.out.println(super.name);

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 47 of 73
Last Modified on 12/01/066:56 AM

 System.out.println(Inner.this.name); // Prints "Sharmi",

Inner has declared 'name'

 }

 }

 }

 }

 /* This is an inner class extending an inner class in the same scope */

 class InnerChild extends Inner {

 public void doSomething() {

// compiler error, explicit qualifier needed

// 'name' is inherited from Inner, Outer's 'name' is also in scope

// System.out.println(name);

 System.out.println(Outer.this.name); // prints "Vel", explicit

reference to Outer

 System.out.println(super.name); // prints "Sharmi", Inner has

declared 'name'

 System.out.println(this.name); // prints "Sharmi", name is inherited

by InnerChild

 }

 }

}

class Outer2 {

 static String name = "Vel";

 static class Inner2 {

 static String name = "Sharmi";

 class InnerInner2 {

 public void doSomething() {

 System.out.println(name); // prints "Sharmi", inner-most hides

outer-most

 System.out.println(Outer2.name); // prints "Vel", explicit reference

to Outer2's static variable

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 48 of 73
Last Modified on 12/01/066:56 AM

// System.out.println(this.name); // error, 'name' is not inherited

// System.out.println(super.name); // error, super refers to Object

 }

 }

 }

}

/* This is a stand-alone class extending an inner class */

class InnerChild2 extends Outer2.Inner2 {

 public void doSomething() {

 System.out.println(name); // prints "Sharmi", Inner2's name is

inherited

 System.out.println(Outer2.name); // prints "Vel", explicit reference

to Outer2's static variable

 System.out.println(super.name); // prints "Sharmi", Inner2 has

declared 'name'

 System.out.println(this.name); // prints "Sharmi", name is inherited

by InnerChild2

 }

}

// Example 2

public class InnerTest2 {

 public static void main(String s[]) {

 new OuterClass().doSomething(10, 20);

// This is legal

// OuterClass.InnerClass ic = new OuterClass().new

InnerClass();

// ic.doSomething();

// Compiler error, local inner classes cannot be accessed from

outside

// OuterClass.LocalInnerClass lic = new OuterClass().new

LocalInnerClass();

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 49 of 73
Last Modified on 12/01/066:56 AM

// lic.doSomething();

 new OuterClass().doAnonymous();

 }

}

class OuterClass {

 final int a = 100;

 private String secret = "Nothing serious";

 public void doSomething(int arg, final int fa) {

 final int x = 100;

 int y = 200;

 System.out.println(this.getClass() + " - in doSomething");

 System.out.print("a = " + a + " secret = " + secret + " arg = "

+ arg + " fa = " + fa);

 System.out.println(" x = " + x + " y = " + y);

// Compiler error, forward reference of local inner class

// new LocalInnerClass().doSomething();

 abstract class AncestorLocalInnerClass { } // inner class can

be abstract

 final class LocalInnerClass extends

AncestorLocalInnerClass { // can be final

 public void doSomething() {

 System.out.println(this.getClass() + " - in doSomething");

 System.out.print("a = " + a);

 System.out.print(" secret = " + secret);

// System.out.print(" arg = " + arg); // Compiler error,

accessing non-final argument

 System.out.print(" fa = " + fa);

 System.out.println(" x = " + x);

// System.out.println(" y = " + y); // Compiler error, accessing

non-final variable

 }

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 50 of 73
Last Modified on 12/01/066:56 AM

 }

new InnerClass().doSomething(); // forward reference fine for

member inner class

 new LocalInnerClass().doSomething();

 }

 abstract class AncestorInnerClass { }

 interface InnerInterface { final int someConstant = 999;} // inner

interface

 class InnerClass extends AncestorInnerClass implements

InnerInterface {

 public void doSomething() {

 System.out.println(this.getClass() + " - in doSomething");

 System.out.println("a = " + a + " secret = " + secret + "

someConstant = " + someConstant);

 }

 }

 public void doAnonymous() {

 // Anonymous class implementing the inner interface

 System.out.println((new InnerInterface() { }).someConstant);

 // Anonymous class extending the inner class

 (new InnerClass() {

public void doSomething() {

 secret = "secret is changed";

 super.doSomething();

}

}).doSomething();

 }

}

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 51 of 73
Last Modified on 12/01/066:56 AM

Entity Declaration

Context

Accessibility

Modifiers

Outer

instance

Direct Access to

enclosing

context

Defines static or

non-static

members

Package level

class

As package

member

Public or

default

No N/A Both static and

non-static

Top level

nested class

(static)

As static class

member

All No Static members

in enclosing

context

Both static and

non-static

Non static

inner class

As non-static

class member

All Yes All members in

enclosing context

Only non-static

Local class

(non-static)

In block with

non-static

context

None Yes All members in

enclosing context

+ local final

variables

Only non-static

Local class

(static)

In block with

static context

None No Static members

in enclosing

context + local

final variables

Only non-static

Anonymous

class (non-

static)

In block with

non-static

context

None Yes All members in

enclosing context

+ local final

variables

Only non-static

Anonymous

class (static)

In block with

static context

None No Static members

in enclosing

context + local

final variables

Only non-static

Package level

interface

As package

member

Public or

default

No N/A Static variables and

non-static method

prototypes

Top level

nested interface

(static)

As static class

member

All No Static members

in enclosing

context

Static variables and

non-static method

prototypes

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 52 of 73
Last Modified on 12/01/066:56 AM

Chapter 7 Threads

• Java is fundamentally multi-threaded.

• Every thread corresponds to an instance of java.lang.Thread class or a sub-class.

• A thread becomes eligible to run, when its start() method is called. Thread scheduler

co-ordinates between the threads and allows them to run.

• When a thread begins execution, the scheduler calls its run method.

Signature of run method – public void run()

• When a thread returns from its run method (or stop method is called – deprecated in

1.2), its dead. It cannot be restarted, but its methods can be called. (it’s just an object

no more in a running state)

• If start is called again on a dead thread, IllegalThreadStateException is thrown.

• When a thread is in running state, it may move out of that state for various reasons.

When it becomes eligible for execution again, thread scheduler allows it to run.

• There are two ways to implement threads.

1. Extend Thread class

• Create a new class, extending the Thread class.

• Provide a public void run method, otherwise empty run in Thread class will be

executed.

• Create an instance of the new class.

• Call start method on the instance (don’t call run – it will be executed on the same

thread)

2. Implement Runnable interface

• Create a new class implementing the Runnable interface.

• Provide a public void run method.

• Create an instance of this class.

• Create a Thread, passing the instance as a target – new Thread(object)

• Target should implement Runnable, Thread class implements it, so it can be a

target itself.

• Call the start method on the Thread.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 53 of 73
Last Modified on 12/01/066:56 AM

• JVM creates one user thread for running a program. This thread is called main thread.

The main method of the class is called from the main thread. It dies when the main

method ends. If other user threads have been spawned from the main thread, program

keeps running even if main thread dies. Basically a program runs until all the user

threads (non-daemon threads) are dead.

• A thread can be designated as a daemon thread by calling setDaemon(boolean)

method. This method should be called before the thread is started, otherwise

IllegalThreadStateException will be thrown.

• A thread spawned by a daemon thread is a daemon thread.

• Threads have priorities. Thread class have constants MAX_PRIORITY (10),

MIN_PRIORITY (1), NORM_PRIORITY (5)

• A newly created thread gets its priority from the creating thread. Normally it’ll be

NORM_PRIORITY.

• getPriority and setPriority are the methods to deal with priority of threads.

• Java leaves the implementation of thread scheduling to JVM developers. Two types

of scheduling can be done.

1. Pre-emptive Scheduling.

Ways for a thread to leave running state -

• It can cease to be ready to execute (by calling a blocking i/o method)

• It can get pre-empted by a high-priority thread, which becomes ready to execute.

• It can explicitly call a thread-scheduling method such as wait or suspend.

• Solaris JVM’s are pre-emptive.

• Windows JVM’s were pre-emptive until Java 1.0.2

2. Time-sliced or Round Robin Scheduling

• A thread is only allowed to execute for a certain amount of time. After that, it has

to contend for the CPU (virtual CPU, JVM) time with other threads.

• This prevents a high-priority thread mono-policing the CPU.

• The drawback with this scheduling is – it creates a non-deterministic system – at

any point in time, you cannot tell which thread is running and how long it may

continue to run.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 54 of 73
Last Modified on 12/01/066:56 AM

• Mactinosh JVM’s

• Windows JVM’s after Java 1.0.2

• Different states of a thread:

1. Yielding

• Yield is a static method. Operates on current thread.

• Moves the thread from running to ready state.

• If there are no threads in ready state, the yielded thread may continue execution,

otherwise it may have to compete with the other threads to run.

• Run the threads that are doing time-consuming operations with a low priority and

call yield periodically from those threads to avoid those threads locking up the

CPU.

2. Sleeping

• Sleep is also a static method.

• Sleeps for a certain amount of time. (passing time without doing anything and w/o

using CPU)

• Two overloaded versions – one with milliseconds, one with milliseconds and

nanoseconds.

• Throws an InterruptedException.(must be caught)

• After the time expires, the sleeping thread goes to ready state. It may not execute

immediately after the time expires. If there are other threads in ready state, it may

have to compete with those threads to run. The correct statement is the sleeping

thread would execute some time after the specified time period has elapsed.

• If interrupt method is invoked on a sleeping thread, the thread moves to ready

state. The next time it begins running, it executes the InterruptedException

handler.

3. Suspending

• Suspend and resume are instance methods and are deprecated in 1.2

• A thread that receives a suspend call, goes to suspended state and stays there until

it receives a resume call on it.

• A thread can suspend it itself, or another thread can suspend it.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 55 of 73
Last Modified on 12/01/066:56 AM

• But, a thread can be resumed only by another thread.

• Calling resume on a thread that is not suspended has no effect.

• Compiler won’t warn you if suspend and resume are successive statements,

although the thread may not be able to be restarted.

4. Blocking

• Methods that are performing I/O have to wait for some occurrence in the outside

world to happen before they can proceed. This behavior is blocking.

• If a method needs to wait an indeterminable amount of time until some I/O takes

place, then the thread should graciously step out of the CPU. All Java I/O

methods behave this way.

• A thread can also become blocked, if it failed to acquire the lock of a monitor.

5. Waiting

• wait, notify and notifyAll methods are not called on Thread, they’re called on

Object. Because the object is the one which controls the threads in this case. It

asks the threads to wait and then notifies when its state changes. It’s called a

monitor.

• Wait puts an executing thread into waiting state.(to the monitor’s waiting pool)

• Notify moves one thread in the monitor’s waiting pool to ready state. We cannot

control which thread is being notified. notifyAll is recommended.

• NotifyAll moves all threads in the monitor’s waiting pool to ready.

• These methods can only be called from synchronized code, or an

IllegalMonitorStateException will be thrown. In other words, only the threads that

obtained the object’s lock can call these methods.

Locks, Monitors and Synchronization

• Every object has a lock (for every synchronized code block). At any moment, this

lock is controlled by at most one thread.

• A thread that wants to execute an object’s synchronized code must acquire the lock of

the object. If it cannot acquire the lock, the thread goes into blocked state and comes

to ready only when the object’s lock is available.

• When a thread, which owns a lock, finishes executing the synchronized code, it gives

up the lock.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 56 of 73
Last Modified on 12/01/066:56 AM

• Monitor (a.k.a Semaphore) is an object that can block and revive threads, an object

that controls client threads. Asks the client threads to wait and notifies them when the

time is right to continue, based on its state. In strict Java terminology, any object that

has some synchronized code is a monitor.

• 2 ways to synchronize:

1. Synchronize the entire method

• Declare the method to be synchronized - very common practice.

• Thread should obtain the object’s lock.

2. Synchronize part of the method

• Have to pass an arbitrary object which lock is to be obtained to execute the

synchronized code block (part of a method).

• We can specify “this” in place object, to obtain very brief locking – not very

common.

• wait – points to remember

� calling thread gives up CPU

� calling thread gives up the lock

� calling thread goes to monitor’s waiting pool

� wait also has a version with timeout in milliseconds. Use this if you’re not sure

when the current thread will get notified, this avoids the thread being stuck in wait

state forever.

• notify – points to remember

� one thread gets moved out of monitor’s waiting pool to ready state

� notifyAll moves all the threads to ready state

� Thread gets to execute must re-acquire the lock of the monitor before it can

proceed.

• Note the differences between blocked and waiting.

Blocked Waiting

Thread is waiting to get a lock on the

monitor.

(or waiting for a blocking i/o method)

Thread has been asked to wait. (by

means of wait method)

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 57 of 73
Last Modified on 12/01/066:56 AM

Caused by the thread tried to execute

some synchronized code. (or a blocking

i/o method)

The thread already acquired the lock

and executed some synchronized code

before coming across a wait call.

Can move to ready only when the lock

is available. (or the i/o operation is

complete)

Can move to ready only when it gets

notified (by means of notify or

notifyAll)

• Points for complex models:

1. Always check monitor’s state in a while loop, rather than in an if statement.

2. Always call notifyAll, instead of notify.

• Class locks control the static methods.

• wait and sleep must be enclosed in a try/catch for InterruptedException.

• A single thread can obtain multiple locks on multiple objects (or on the same object)

• A thread owning the lock of an object can call other synchronous methods on the

same object. (this is another lock) Other threads can’t do that. They should wait to get

the lock.

• Non-synchronous methods can be called at any time by any thread.

• Synchronous methods are re-entrant. So they can be called recursively.

• Synchronized methods can be overrided to be non-synchronous. synchronized

behavior affects only the original class.

• Locks on inner/outer objects are independent. Getting a lock on outer object doesn’t

mean getting the lock on an inner object as well, that lock should be obtained

separately.

• wait and notify should be called from synchronized code. This ensures that while

calling these methods the thread always has the lock on the object. If you have

wait/notify in non-synchronized code compiler won’t catch this. At runtime, if the

thread doesn’t have the lock while calling these methods, an

IllegalMonitorStateException is thrown.

• Deadlocks can occur easily. e.g, Thread A locked Object A and waiting to get a lock

on Object B, but Thread B locked Object B and waiting to get a lock on Object A.

They’ll be in this state forever.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 58 of 73
Last Modified on 12/01/066:56 AM

• It’s the programmer’s responsibility to avoid the deadlock. Always get the locks in

the same order.

• While ‘suspended’, the thread keeps the locks it obtained – so suspend is deprecated

in 1.2

• Use of stop is also deprecated, instead use a flag in run method. Compiler won’t warn

you, if you have statements after a call to stop, even though they are not reachable.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 59 of 73
Last Modified on 12/01/066:56 AM

Chapter 8 java.lang package

• Object class is the ultimate ancestor of all classes. If there is no extends clause,

compiler inserts ‘extends object’. The following methods are defined in Object class.

All methods are public, if not specified otherwise.

Method Description

boolean equals(Object o) just does a == comparison, override in descendents to provide meaningful

comparison

final native void wait()

final native void notify()

final native void

notifyAll()

Thread control. Two other versions of wait() accept timeout parameters and

may throw InterruptedException.

native int hashcode() Returns a hash code value for the object.

If two objects are equal according to the equals method, then calling the

hashCode method on each of the two objects must produce the same integer

result.

protected Object clone()

throws

CloneNotSupportedExcep

tion

CloneNotSupportedExcep

tion is a checked

Exception

Creates a new object of the same class as this object. It then initializes each

of the new object's fields by assigning it the same value as the

corresponding field in this object. No constructor is called.

The clone method of class Object will only clone an object whose class

indicates that it is willing for its instances to be cloned. A class indicates

that its instances can be cloned by declaring that it implements the

Cloneable interface. Also the method has to be made public to be called

from outside the class.

Arrays have a public clone method.

int ia[][] = { { 1 , 2}, null };

int ja[][] = (int[] [])ia.clone();

A clone of a multidimensional array is shallow, which is to say that it

creates only a single new array. Subarrays are shared, so ia and ja are

different but ia[0] and ja[0] are same.

final native Class

getClass()

Returns the runtime class of an object.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 60 of 73
Last Modified on 12/01/066:56 AM

String toString Returns the string representation of the object. Method in Object returns a

string consisting of the name of the class of which the object is an instance,

the at-sign character `@', and the unsigned hexadecimal representation of the

hash code of the object. Override to provide useful information.

protected void finalize()

throws

Throwable

Called by the garbage collector on an object when garbage collection

determines that there are no more references to the object.

Any exception thrown by the finalize method causes the finalization of this

object to be halted, but is otherwise ignored.

The finalize method in Object does nothing. A subclass overrides the

finalize method to dispose of system resources or to perform other cleanup.

• Math class is final, cannot be sub-classed.

• Math constructor is private, cannot be instantiated.

• All constants and methods are public and static, just access using class name.

• Two constants PI and E are specified.

• Methods that implement Trigonometry functions are native.

• All Math trig functions take angle input in radians.

Angle degrees * PI / 180 = Angle radians

• Order of floating/double values:

-Infinity --> Negative Numbers/Fractions --> -0.0 --> +0.0 --> Positive

Numbers/Fractions --> Infinity

• abs – int, long, float, double versions available

• floor – greatest integer smaller than this number (look below towards the floor)

• ceil – smallest integer greater than this number (look above towards the ceiling)

• For floor and ceil functions, if the argument is NaN or infinity or positive zero or

negative zero or already a value equal to a mathematical integer, the result is the same

as the argument.

• For ceil, if the argument is less than zero but greater than –1.0, then the result is a

negative zero

• random – returns a double between 0.0(including) and 1.0(excluding)

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 61 of 73
Last Modified on 12/01/066:56 AM

• round returns a long for double, returns an int for float. (closest int or long value to

the argument)

The result is rounded to an integer by adding ½ , taking the floor of the result, and

casting the result to type int / long.

(int)Math.floor(a + 0.5f)

(long)Math.floor(a + 0.5d)

• double rint(double) returns closest double equivalent to a mathematical integer. If two

values are equal, it returns the even integer value. rint(2.7) is 3, rint(2.5) is 2.

• Math.min(-0.0, +0.0) returns –0.0, Math.max(-0.0, +0.0) returns 0.0, -0.0 == +0.0

returns true.

• For a NaN or a negative argument, sqrt returns a NaN.

• Every primitive type has a wrapper class (some names are different – Integer,

Boolean, Character)

• Wrapper class objects are immutable.

• All Wrapper classes are final.

• All wrapper classes, except Character, have a constructor accepting string. A Boolean

object, created by passing a string, will have a value of false for any input other than

“true” (case doesn’t matter).

• Numeric wrapper constructors will throw a NumberFormatException, if the passed

string is not a valid number. (empty strings and null strings also throw this exception)

• equals also tests the class of the object, so even if an Integer object and a Long object

are having the same value, equals will return false.

• NaN’s can be tested successfully with equals method.

Float f1 = new Float(Float.NaN);

Float f2 = new Float(Float.NaN);

System.out.println(""+ (f1 == f2)+" "+f1.equals(f2)+ " "+(Float.NaN ==

Float.NaN));

The above code will print false true false.

• Numeric wrappers have 6 methods to return the numeric value – intValue(),

longValue(), etc.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 62 of 73
Last Modified on 12/01/066:56 AM

• valueOf method parses an input string (optionally accepts a radix in case of int and

long) and returns a new instance of wrapper class, on which it was invoked. It’s a

static method. For empty/invalid/null strings it throws a NumberFormatException.

For null strings valueOf in Float and Double classes throw NullPointerException.

• parseInt and parseLong return primitive int and long values respectively, parsing a

string (optionally a radix). Throw a NumberFormatException for invalid/empty/null

strings.

• Numeric wrappers have overloaded toString methods, which accept corresponding

primitive values (also a radix in case of int,long) and return a string.

• Void class represents void primitive type. It’s not instantiable. Just a placeholder

class.

• Strings are immutable.

• They can be created from a literal, a byte array, a char array or a string buffer.

• Literals are taken from pool (for optimization), so == will return true, if two strings

are pointing to the same literal.

• Anonymous String objects (literals) may have been optimized even across classes.

• A String created by new operator is always a different new object, even if it’s created

from a literal.

• But a String can specify that its contents should be placed in a pool of unique strings

for possible reuse, by calling intern() method. In programs that do a lot of String

comparisons, ensuring that all Strings are in the pool, allows to use == comparison

rather than the equals() method, which is slower.

• All string operations (concat, trim, replace, substring etc) construct and return new

strings.

• toUpperCase and toLowerCase will return the same string if no case conversion was

needed.

• equals takes an object (String class also has a version of equals that accepts a String),

equalsIgnoreCase takes a string.

• Passing null to indexOf or lastIndexOf will throw NullPointerException, passing

empty string returns 0, passing a string that’s not in the target string returns –1.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 63 of 73
Last Modified on 12/01/066:56 AM

• trim method removes all leading and trailing white-space from a String and returns a

new String. White-space means, all characters with value less than or equal to the

space character – ‘\u0020’.

• String class is final.

• + and += operators are overloaded for Strings.

• reverse, append, insert are not String methods.

• String Buffers are mutable strings.

• StringBuffer is a final class.

• They can be created empty, from a string or with a capacity. An empty StringBuffer

is created with 16-character capacity. A StringBuffer created from a String has the

capacity of the length of String + 16. StringBuffers created with the specified capacity

has the exact capacity specified. Since they can grow dynamically in size without

bounds, capacity doesn’t have much effect.

• append, insert, setCharAt, reverse are used to manipulate the string buffer.

• setLength changes the length, if the current content is larger than specified length, it’s

truncated. If it is smaller than the specified length, nulls are padded. This method

doesn’t affect the capacity.

• equals on StringBuffer does a shallow comparison. (same like ==) Will return true

only if the objects are same. Don’t use it to test content equality.trim is not a

StringBuffer method.There is no relationship between String and StringBuffer. Both

extend Object class.

• String context means, ‘+’ operator appearing with one String operand. String

concatenation cannot be applied to StringBuffers.

• A new String buffer is created.

• All operands are appended (by calling toString method, if needed)

• Finally a string is returned by calling toString on the String Buffer.

• String concatenation process will add a string with the value of “null”, if an object

reference is null and that object is appearing in a concatenation expression by itself.

But if we try to access its members or methods, a NullPointerException is thrown.

The same is true for arrays, array name is replaced with null, but trying to index it

when it’s null throws a NullPointerException.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 64 of 73
Last Modified on 12/01/066:56 AM

Chapter 9 java.util package

• A collection (a.k.a bag or multiset) allows a group of objects to be treated as a single

unit. Arbitrary objects can be stored, retrieved and manipulated as elements of these

collections.

• Collections Framework presents a set of standard utility classes to manage such

collections.

1. It contains ‘core interfaces’ which allow collections to be manipulated

independent of their implementations. These interfaces define the common

functionality exhibited by collections and facilitate data exchange between

collections.

2. A small set of implementations that are concrete implementations of the core

interfaces, providing data structures that a program can use.

3. An assortment of algorithms to perform various operations such as, sorting and

searching.

• Collections framework is interface based, collections are implemented according to

their interface type, rather than by implementation types. By using the interfaces

whenever collections of objects need to be handled, interoperability and

interchangeability are achieved.

• By convention each of the collection implementation classes provide a constructor to

create a collection based on the elements in the Collection object passed as argument.

By the same token, Map implementations provide a constructor that accepts a Map

argument. This allows the implementation of a collection (Collection/Map) to be

changed. But Collections and Maps are not interchangeable.

• Interfaces and their implementations in Java 1.2

Collection

 |

 |__ Set (no dupes, null allowed based on implementation) � HashSet

 | |

 | |__ SortedSet (Ordered Set) � TreeSet

 |

 |__ List (ordered collection, dupes OK) � Vector, ArrayList, LinkedList

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 65 of 73
Last Modified on 12/01/066:56 AM

 Map (key-value pairs, null allowed based on implementation) � HashTable,

HashMap

 |

 |__ SortedMap (Ordered Map) � TreeMap

Interface Description

Collection A basic interface that defines the operations that all the classes that

maintain collections of objects typically implement.

Set Extends Collection, sets that maintain unique elements. Set interface

is defined in terms of the equals operation

SortedSet Extends Set, maintain the elements in a sorted order

List Extends Collection, maintain elements in a sequential order,

duplicates allowed.

Map A basic interface that defines operations that classes that represent

mappings of keys to values typically implement

SortedMap Extends Map for maps that maintain their mappings in key order.

• Classes that implement the interfaces use different storage mechanisms.

1. Arrays

Indexed access is faster. Makes insertion, deletion and growing the store more

difficult.

2. Linked List

Supports insertion, deletion and growing the store. But indexed access is slower.

3. Tree

Supports insertion, deletion and growing the store. Indexed access is slower. But

searching is faster.

4. Hashing

Supports insertion, deletion and growing the store. Indexed access is slower. But

searching is faster.

However, requires the use of unique keys for storing data elements.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 66 of 73
Last Modified on 12/01/066:56 AM

Interfaces Data Structures

to implement Set SortedSet List Map SortedMap

Hash Table HashSet

(Nulls

OK)

 HashMap (Nulls

OK)

HashTable (No

Nulls)

Resizable Array ArrayList

(Nulls OK)

Vector(Nulls

OK)

Balanced Tree TreeSet TreeMap

Linked List LinkedList

(Nulls OK)

• Some of the operations in the collection interfaces are optional, meaning that the

implementing class may choose not to provide a proper implementation of such an

operation. In such a case, an UnsupportedOperationException is thrown when that

operation is invoked.

Interface Methods Description

Collecti

on

Basic

Operation

s

int size();

boolean isEmpty();

boolean contains(Object

element);

boolean add(Object element);

boolean remove(Object

element);

Used to query a collection about its

contents, and add/remove elements.

The add() and remove() methods return

true if the collection was modified as a

result of the operation. The contains()

method checks for membership.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 67 of 73
Last Modified on 12/01/066:56 AM

Bulk

Operation

s

boolean containsAll(Collection

c);

boolean addAll(Collection c);

boolean removeAll(Collection

c);

boolean retainAll(Collection c);

void clear();

Perform on a collection as a single unit.

Operations are equivalent of set logic

on arbitrary collections (not just sets).

The addAll(), removeAll(), clear() and

retainAll() methods are destructive.

Array

Operation

s

Object[] toArray();

Object[] toArray(Object a[]);

These methods combined with

Arrays.asList() method provide the

bridge between arrays and collections.

Iterators Iterator iterator();

Iterator is an interface which has

these methods.

boolean hasNext();

Object next();

void remove();

Returns an iterator, to iterate the

collection.

The remove() method is the only

recommended way to remove elements

from a collection during the iteration.

Set No new methods defined.

The add() method returns false, if the

element is already in the Set. No

exceptions are thrown.

Element

Access by

Index

Object get(int index);

Object set(int index, Object

element);

void add(int index, Object

element);

Object remove(int index);

boolean addAll(int index,

Collection c);

First index is 0, last index is size() – 1.

An illegal index throws

IndexOutOfBoundsException.
List

Element

Search

int indexOf(Object o);

int lastIndexOf(Object o);

If the element is not found, return –1.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 68 of 73
Last Modified on 12/01/066:56 AM

List

Iterators

ListIterator listIterator();

ListIterator listIterator(int

index);

ListIterator extends Iterator. It

allows iteration in both

directions.

ListIterator’s additional methods:

boolean hasPrevious();

boolean previous();

int nextIndex();

int prviousIndex();

void set(Object o);

void add(Object o);

Open

Range

View

List subList(int fromIndex, int

toIndex);

Returns a range of the list from

fromIndex (inclusive) to toIndex

(exclusive). Changes to view are

reflected in the list and vice versa.

Basic

Operation

s

Object put(Object key, Object

value);

Object get(Object key);

Object remove(Object key);

boolean containsKey(Object

key);

boolean containsValue(Object

value);

int size();

boolean isEmpty();

The put method replaces the old value,

if the map previously contained a

mapping for that key.

The get method returns null, if the

specified key couldn’t be found in the

map.
Map

Bulk

Operation

s

void putAll(Map t);

void clear();

putAll() adds all the elements from the

specified map.

clear() removes all the elements from

the map.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 69 of 73
Last Modified on 12/01/066:56 AM

Collectio

n Views

Set keySet();

Collection values();

Set entrySet();

Note that the values () method,

returns a Collection, not a set.

Reason is, multiple unique keys

can map to the same value.

Provide different views on a Map.

Changes to views are reflected in the

map and vice versa.

Each <key,value> pair is represented

by an Object implementing Map.Entry

interface.

Object getKey();

Object getValue();

Object setValue(Object value);

Range

View

Operation

s

SortedSet headSet(Object

toElement);

SortedSet tailSet(Object

fromElement);

SortedSet subSet(Object

fromElement, Object

toElement);

fromElement is inclusive, toElement is

exclusive. The views present the

elements sorted in the same order as the

underlying sorted set.

Min-Max

Points

Object first();

Object last();

Return the first (lowest) and last

(highest) elements.

SortedSe

t

Comparat

or Access

Comparator comparator(); Returns the compartor associated with

this SortedSet, or null if it uses natural

ordering.

Range

View

Operation

s

SortedMap headMap(Object

toKey);

SortedSet tailMap(Object

fromKey);

SortedSet subMap(Object

fromKey, Object toKey);

SortedMap is sorted with keys.

fromKey is inclusive, toKey is

exclusive. The views present the

elements sorted in the same order as the

underlying sorted map.

SortedM

ap

Min-Max

Points

Object firstKey();

Object lastKey();

Return the first (lowest) and last

(highest) keys.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 70 of 73
Last Modified on 12/01/066:56 AM

Comparat

or Access

Comparator comparator(); Returns the compartor associated with

this SortedMap, or null if it uses natural

ordering.

• Sorting in SortedSets and SortedMaps can be implemented in two ways.

1. Objects can specify their natural order by implementing Comparable interface.

Many if the standard classes in Java API, such as wrapper classes, String, Date

and File implement this interface. This interface defines a single method:

int compareTo(Object o) – returns negative, zero, positive if the current object

is less than, equal to or greater than the specified object.

In this case a natural comparator queries objects implementing Comparable about

their natural order. Objects implementing this interface can be used:

• As elements in a sorted set.

• As keys in sorted map.

• In lists which can be sorted automatically by the Collections.sort()

method.

2. Objects can be sorted by specific comparators, which implement Comparator

interface. This interface defines the following method:

int compare(Object o1, Object o2) – returns negative, zero, positive if the first

object is less than, equal to or greater than the second object. It is

recommended that its implementation doesn’t contradict the semantics of the

equals() method.

Specific Comparators can be specified in the constructors of SortedSets and

SortedMaps.

• All classes provide a constructor to create an empty collection (corresponding to the

class). HashSet, HashMap, HashTable can also be specified with an initial capacity as

well as a load factor (the ratio of number of elements stored to its current capacity).

Most of the time, default values provide acceptable performance.

• A Vector, like an array, contains items that can be accessed using an integer index.

However, the size of a Vector can grow and shrink as needed to accommodate adding

and removing items after the Vector has been created.

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 71 of 73
Last Modified on 12/01/066:56 AM

• Vector (5,10) means initial capacity 5, additional allocation (capacity increment) by

10.

• Stack extends Vector and implements a LIFO stack. With the usual push() and pop()

methods, there is a peek() method to look at the object at the top of the stack without

removing it from the stack.

• Dictionary is an obsolete class. HashTable extends dictionary. Elements are stored as

key-value pairs.

• Vector and HashTable are the only classes that are thread-safe.

• ArrayList (does what Vector does), HashMap(does what HashTable does),

LinkedList and TreeMap are new classes in Java 1.2

• In Java 1.2, Iterator duplicates the functionality of Enumeration. New

implementations should consider Iterator.

• Collections is a class, Collection is an interface.

• Collections class consists exclusively of static methods that operate on or return

collections.

• Sorting and Searching algorithms in the Collections class.

static int binarySearch(List list, Object key)

static void fill(List list, Object o)

static void shuffle(List list, Object o)

static void sort(List list)

• Factory methods to provide thread-safety and data immutability. These methods

return synchronized (thread-safe) / immutable collections from the specified

collections.

List safeList = Collections.synchronizedList(new LinkedList());

SortedMap fixedMap = Collections.unmodifiableSortedMap(new SortedMap());

• Constants to denote immutable empty collections in the Collections class:

EMPTY_SET, EMPTY_LIST and EMPTY_MAP.

• Collections class also has the following methods:

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 72 of 73
Last Modified on 12/01/066:56 AM

Method Description

public static Set singleton(Object

o)

Returns an immutable set containing only the

specified object

public static List

singletonList(Object o)

Returns an immutable list containing only the

specified object

public static Map

singletonMap(Object key, Object

value)

Returns an immutable map containing only the

specified key, value pair.

public static List nCopies (int n,

Object o)

Returns an immutable list consisting of n copies of

the specified object. The newly allocated data

object is tiny (it contains a single reference to the

data object). This method is useful in combination

with the List.addAll method to grow lists.

• The class Arrays, provides useful algorithms that operate on arrays. It also provides

the static asList() method, which can be used to create List views of arrays. Changes

to the List view affects the array and vice versa. The List size is the array size and

cannot be modified. The asList() method in the Arrays class and the toArray() method

in the Collection interface provide the bridge between arrays and collections.

Set mySet = new HashSet(Arrays.asList(myArray));

String[] strArray = (String[]) mySet.toArray();

• All concrete implementations of the interfaces in java.util package are inherited from

abstract implementations of the interfaces. For example, HashSet extends

AbstractSet, which extends AbstractCollection. LinkedList extends AbstractList,

which extends AbstractCollection. These abstract implementations already provide

most of the heavy machinery by implementing relevant interfaces, so that customized

implementations of collections can be easily implemented using them.

• BitSet class implements a vector of bits that grows as needed. Each component of the

bit set has a boolean value. The bits of a BitSet are indexed by nonnegative integers.

Individual indexed bits can be examined, set, or cleared. One BitSet may be used to

Study Notes for Sun Certified Programmer for Java 2 Platform

Page 73 of 73
Last Modified on 12/01/066:56 AM

modify the contents of another BitSet through logical AND, logical inclusive OR, and

logical exclusive OR operations.

By default, all bits in the set initially have the value false. A BitSet has a size of 64,

when created without specifying any size.

• ConcurrentModificationException exception (extends RuntimeException) may be

thrown by methods that have detected concurrent modification of a backing object

when such modification is not permissible.

For example, it is not permssible for one thread to modify a Collection while another

thread is iterating over it. In general, the results of the iteration are undefined under

these circumstances. Some Iterator implementations (including those of all the

collection implementations provided by the JDK) may choose to throw this exception

if this behavior is detected. Iterators that do this are known as fail-fast iterators, as

they fail quickly and cleanly, rather that risking arbitrary, non-deterministic behavior

at an undetermined time in the future.

