

www.JavaEra.com

74

SERVLETS

INTRODUCTION

Why there is a need for Server-side programming?

In applets, processing takes place at the client side. So, the burden on client side has
increased when the process is more complex. As applets are not permitted to write to the
client machine’s local disk, they had to suffer some efficiency problems when it comes to
complex situations. Moreover, the need for making the client a ‘thin client’ has become
more important to give faster access to the client. Applets are quite slow and all the
browsers should support the applets. Keeping this in view a server-side program is
developed, it is known as servlets, where there is no complexity on the client side.

World Wide Web

The World Wide Web is a huge collection of interconnected hypertext documents on the
Internet. A hypertext document that contains hot links to other documents. There are
many thousands of hypertext authors on the Internet, each of them free to connect their
documents to anyone else.

The Web is based on two standards: HTTP protocol and the HTML language. HTTP
stands for HyperText Transfer Protocol and it describes the way that hypertext documents
are fetched over the internet. HTML is the abbreviation for hypertext markup language,
and it describes how the HTML documents are rendered on to the browsers.

Resources on the Web are specified with a Uniform Resource Locator (URL). As it is
conceived that the WWW is a pure two-tier client-server application. The user interface is
“dumb”, just a presentation written in HTML. For a simple document, hyperlinking this is
sufficient. The server is also rather dumb. Its only function is to server out HTML pages.
It contains no logic other than this.

Dynamic content

Very early in the evolution of the WWW developers needed a mechanism to add some
‘smarts’ to the server side. While a web page merely displays static content and lets the
user navigate through that content, a web application provides a more interactive
experience. A web application can be as simple as a keyword search on a document
archive or as complex as an electronic storefront. Web applications are being deployed
on the Internet and on corporate Intranets and Extranets, where they have the potential to
increase productivity and change the way that companies, large and small, do business.
There are so many ways to create web applications some of them are discussed here.

Common Gateway Interface

The Common Gateway Interface normally refereed to, as CGI was one of the first
practical techniques for creating dynamic web content.

www.JavaEra.com

75

You can use URLs within an HTTP message to locate a server program anywhere on the
Internet. On the receiving end, the typical web server only knows how to handle HTML
documents. When it receives a request for a program, it simply turns around and invokes
the resource named in the URL, and tells it to take care of the request. The server
passes the method request and its parameters to the back-end program using a protocol
called the CGI. You can write your CGI programs in any language that can read standard
input and write to standard output including Java. The application executes and returns
the results in HTML/HTTP format to the server. The server turns around and returns the
results to the client.

Active Server Pages

Active Server Pages (popularly known as ASPs) is a technique developed for generating
dynamic web content. With ASP, an HTML page on the web server can contain snippets
of embedded code (usually VBScript or Jscript – although it’spossible to use nearly any
language). This code is read and executed by the web server before it sends the page to
the client. ASP is optimized for generating small portions of dynamic content. Microsoft’s
IIS (Internet Information Server) supports ASPs.

1 WHAT

1.1 Definition

"Servlet is a web component, managed by a container, that generates dynamic content."

“Servlets are small, platform independent Java classes compiled to an architecture
neutral bytecode that can be loaded dynamically into and run by a web server.”

“Servlets are modules that extend request/response-oriented servers, such as Java-
enabled web servers.”

“Servlet interacts with web clients through a request-response model (which is based on
the behavior of HTTP) implemented by the servlet container.”

1.2 Servlet Container

Here, we must know what is a Servlet Container. A Servlet container, in conjunction with
web server -

- provides network services over which request and responses are set
- decodes MIME based requests, and
- formats MIME based responses.

www.JavaEra.com

76

A Servlet Container can be built into a host web server, or it can be installed as an add-on
component to a web server. A servlet container must support HTTP as protocol for
requests and responses. The minimum required version of HTTP is 1.0.

1.3 HTTP basics

Before going into the details of Servlets you must have a basic understanding of how the
protocol behind the Web, HTTP works.

HTTP is a simple, stateless protocol. A client, such as a web browser, makes a request,
the web server responds, and the transaction is done. When the client sends a request,
the first thing it specifies is an HTTP command, called a method, that tells the server the
type of action it wants performed. This first line of the request also specifies the address
of a document (a URL) and the version of the HTTP protocol it is using. For example:

GET /intro.html HTTP/1.0

This request uses the GET method to ask for the document named intro.html, using
HTTP version 1.0. After sending the request, the client can send optional header
information to tell the server extra information about the request, such as what software
the client is running and what content types it understands. This information doesn’t
directly pertain to what was requested, but it could be used by the server in generating its
response. Here are some sample requests headers:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Wind ows 95)
Accept: image/gif, image/jpeg, text/*, */*

After the headers, the client sends a blank line, to indicate the end of the header section.
The client can also send data, if appropriate for the method being used, as it is with the
POST method that we’ll discuss shortly. If the request doesn’t send any data it ends with
an empty line.

After the client sends the request, the server processes it and sends back a response.
The first line of the response is a status line that specifies the version of HTTP protocol
the server is using, a status code, and a description of the status code. For example,

HTTP/1.0 200 OK

This status line includes a status code of 200, which indicates that the request was
successful, hence, the description “OK”. Another common status code is 404, with the
description “not found” – as you can guess, this means that the requested document was
not found. After the status line, the server sends response headers that tell the client
things like what software the server is running and the content type of the server’s
response. For example:

Date: Sunday, 14-November-99 03:24:10 GMT
Server: JavaWebServer/1.1
MIME-version: 1.0
Content-type: text/html
Content-length: 2048
Last-modified: Friday, 12-November-99 08:10:54 GMT

The Server header provides information about the server software, while the Content-type
header specifies the MIME type of the data included with the response. The server sends
a blank line after the headers, to conclude the header section. If the request was
successful, the requested data is then sent as a part of the response. Otherwise, the
response may contain human readable data that explains why the server couldn’t fulfill
the request.

www.JavaEra.com

77

1.3.1 GET and POST

When a client connects to a server and makes an HTTP request, the request can be of
several different types, called ‘methods’. The most frequently used methods are GET and
POST. In simple way, we can say that GET method is designed for getting information (a
document, a chart, or the results from a database query), while the POST method is
designed for posting information (a credit card number, a chart data, or information that is
to be stored in a database).

GET

The GET method gets information from the server by sending a ‘query string’ along with
the URL. For example, see the following URL that sends a query string to get some
information from the server like results from a database:

http://something.com/servlet/givedata?name=jpcl&pla ce=hyd

In general, GET requests are used for sending small amounts of information, so, some
servers limit the length of URLs and query strings to about 240 characters.

 POST

The POST method uses a different technique to send information to the server because
in some cases it may need to send megabytes of information. A POST request passes all
its data, of unlimited length, directly over the socket connection as part of its HTTP
request body. POST request can be done only once.

Some important notes:

- For long parameterized requests use POST method
- For simple forms that upload information you can even use GET
- GET requests should not be used to place an order, update a database etc. (that

should done only once)

2 WHY

2.1 Need for Servlets

A web page merely displays static content and lets the user navigate through that
content. But, a web application can provide more interactive experience. Creating
dynamic content for a web page or otherwise extending the functionality of a web server
effects in creating a web application. A web application can be as simple as a keyword
search on a document archive or as complex as a store-front. Before servlets, CGI
(Common Gateway Interface) scripts are used to create dynamic web content (web
application). But, today servlets are often used to extend web servers, providing a
powerful, efficient replacement for CGI scripts.

2.1.1 Differences between CGI scripts and Servlets

www.JavaEra.com

78

Here, we must know how servlets replace CGI scripts? What are the problems or
inefficiencies associated with CGI scripts ? How servlets are overcoming those problems?
The following are some of the differences between CGI scripts and Servlets -

CGI Scripts Servlets
CGI programs run in a separate process Servlets run inside a JVM on the server
When a server receives a request that
accesses a CGI program, the server
must create a new process. Creating a
process for every such request requires
time and significant server resources,
which limits the number of requests a
server can handle concurrently. (see
Fig.1)

Servlets are all handled by separate
threads within the web server process,
as they run in a JVM within the web
server. So, the server can handle any
number of requests concurrently. (see
Fig. 2)

CGI program cannot interact with the
web server once it begins execution, as
it is running in a separate process.

Servlets run within the web server and
can interact very closely with the server
to do things that are not possible with
CGI scripts.

When CGI scripts are written in Perl, it
requires that each request start
separate Perl interpreter, which takes
more time and requires extra
resources.

Servlets run on the JVM, so it takes care
of running the servlet in a multithreaded
way.

For each request made to a CGI
program it creates an instance of the
program. So, it takes more memory.

Servlets create only one instance and
every request to that servlet is
processed by creating threads. So, it
takes less memory when compared to
CGI programs.

www.JavaEra.com

79

For the above reasons, CGI scripts can be replaced by servlets. There are lots of reasons
to justify servlets as an alternative to other dynamic web content technologies. (Viz. Fast
CGI, mod_perl, PerlEx, Server Extension APIs, Active Server Pages, Server-side
JavaScript etc.)

2.2 Advantages of Servlets

Definitely, servlets offer more advantages than any other approach to create dynamic
web content. The power of servlets can be attributed to the following:

2.2.1 Portability

As servlets are written in Java, they are highly portable across operating systems.

2.2.2 Power

Servlets can use the power of core Java API like networking, multi-threading, image
manipulation, data compression, database connectivity, internationalization, remote
method invocation, CORBA connectivity, and object serialization etc. As a servlet author,
you can use third-party Java classes, JavaBeans components, and even Enterprise
JavaBeans components.

2.2.3 Efficient

Servlet invocation is highly efficient. Once a servlet is loaded, it generally remains in the
server's memory as a single object instance. Thereafter, the server invokes the servlet to
handle a request using a simple, lightweight method invocation. Concurrent requests are
handled by separate threads, so servlet are highly scalable.

2.2.4 Safety

www.JavaEra.com

80

As servlets are written in Java, they inherit the strong type safety of the Java language.
Servlets can handle exceptions safely due to Java's exception-handling mechanism.

2.2.5 Elegance

Servlet code is elegant, clean, object oriented, modular, and amazingly simple. The
reason for simplicity is the Servlet API, which includes methods and classes to handle
routine chores during servlet development. Even advanced operations, like cookie
handling and session tracking, are abstracted into convenient classes.

2.2.6 Extensible and Flexible

The Servlet API is designed to be easily extensible. Presently, it includes classes for
HTTP servlets and at a later date, it may be extended to include other type of servlets.
(Viz. FTP etc.) Servlets are also quite flexible. Servlets can be used in generating a web
page, in a server-side include and even in a servlet chain.

3 HOW

3.1 Basic mechanism

A client program, such as a web browser, accesses a web server and makes an HTTP
request. This request is processed by the web server and is handed off to the servlet
container. The servlet container determines which servlet to invoke based on its internal
configuration and calls it with objects representing the request and response.

The servlet container can run –

- in the same process as the host web server,
- in a different process on the same host, OR
- on a different host from the web server for which it processes requests.

The servlet uses the request object to find out who the remote user is, what HTML
parameters may have been sent as part of this request, and other relevant data. The
servlet can then perform whatever logic it was programmed with and can generate data to
send back to the client. It sends this data back to the client via the response object.

Once the servlet is done with the request, the servlet container ensures that the response
is properly flushed and returns control back to the host web server.

3.2 Servlet Architecture Overview

The central abstraction in the JSDK is the Servlet interface. All servlets implement this
interface, either directly or, more commonly, by extending a class that implements it such

www.JavaEra.com

81

as HttpServlet. The Servlet interface provides for methods that manage the servlet and its
communications with clients. Servlet writers provide some or all of these methods when
developing a servlet

When a servlet accepts a call from a client it receives two objects: one is a
ServletRequest and the other is a ServletResponse. The ServletRequest class
encapsulates the communication from the client to the server, while the ServletResponse
class encapsulates the communication from the servlet back to the client.

The ServletRequest interface allows the servlet access to information such as the names
of the parameters passed in by the client, the protocol (scheme) being used by the client,
and the names of the remote host that made the request and the server that received it. It
also provides the servlet with access to the input stream, ServletInputStream, through
which the servlet gets data from clients that are using application protocols such as the
HTTP POST and PUT methods. Subclasses of ServletRequest allow the servlet to
retrieve more protocol-specific data. For example, HttpServletRequest contains methods
for accessing HTTP-specific header information.

The ServletResponse interface gives the servlet methods for replying to the client. It
allows the servlet to set the content length and mime type of the reply, and provides an
output stream, ServletOutputStream, and a Writer through which the servlet can send the
reply data. Subclasses of ServletResponse give the servlet more protocol-specific
capabilities. For example, HttpServletResponse contains methods that allow the servlet to
manipulate HTTP-specific header information.

The classes and interfaces described above make up a basic Servlet. HTTP servlets
have some additional objects that provide session-tracking capabilities. The servlet
writer can use these APIs to maintain state between the servlet and the client that
persists across multiple connections during some time period.

3.3 Writing a SimpleServlet

The following example gives you an example of a servlet.

/** This example will work both with JSDK2.0 as wel l as Java
 ** Web Server. */
import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class SimpleServlet extends GenericServlet {

public void doGet(ServletRequest request, ServletRe sponse
response) throws IOException,ServletException {

 PrintWriter out ;
 String title=”Simple Servlet Output”;
 response.setContentType(”text/html”);
 out=response.getWriter();
 out.println(“<HTML><HEAD><TITLE>”);

out.println(title);
out.println(”</TITLE></HEAD><BODY>”);
out.println(”<H1>” + title + ”</H1>”);
out.println(”<P>This is output from SimpleServlet. ”);
out.println(”</BODY></HTML>”);
out.close();

 }
 }

SimpleServlet extends the GenericServlet class, which implements the Servlet interface.
SimpleServlet overrides the service method in the GenericServlet class. The service

www.JavaEra.com

82

method is called when a client makes a request and results in the simple HTML page
being returned to the client.

Within the service method,

- An ServletRequest object represents the user’s request.
- An ServletResponse object represents the response to the user.
- Because text data is returned to the client, the reply is sent using the Writer

object obtained from the ServletResponse object.

3.4 Running Servlets

To run any servlet, you need a Web Server that supports them. Here we will discuss
about the use of JavaSoft’s Java Web Server. Not only Java Web Server but also any
other servlet-enabled server will work. To run a servlet one must follow the under
mentioned sequence of actions:

i. Start your Web server, if it is not already running
ii. Configure the server to install the servlet (the servlet must be installed in the Web

server)
iii. Start your Web browser
iv. Direct the browser to the particular URL that refers to the new servlet.

Servlets can be invoked in two ways:

- servlets can be called directly by typing their URL into a browser’s location
window.

- Servlets’ URLs can be used in HTML tags.

<FORM ACTION=”……”>
<META CONTENT=”……”>

Let’s see the first case where servlet can be called directly by typing URL into the
browser’s location window. The URL for a servlet has the following general form, where
servlet-name corresponds to the name you have given your servlet.

http://machine-name:port/servlet/servlet-name

For example, the above SimpleServlet can be invoked by typing the following URL in
browser’s location window.

http://localhost:8080/servlet/SimpleServlet

The second option, to invoke a servlet from within an HTML page, just use the servlet
URL in the appropriate HTML tag. Tags that take URLs include those that begin anchors,
forms, and Meta tags. We will see each tag in detail.

Anchor tags:

Invoke the SimpleServlet

Form tags:

<FORM ACTION=”http://localhost:8080/servlet/SimpleServlet”
 METHOD=”post”>
</FORM>

www.JavaEra.com

83

Meta tags:

<HEAD>
<META HTTP-EQUIV=”refresh” CONTENT=4;
 URL=” http://localhost:8080/servlet/SimpleServlet;” >
</HEAD>

3.4.1 Testing Servlets

Once you have written your servlet, but before running the same, you can test it with the
utility included in the JSDK2.0 called ‘servletrunner’. To run this utility you might have to
specify certain pieces of data called ‘servlet properties’. After the properties are specified,
you can run the servletrunner utility, and then invoke the servlet by any means specified
above. First let’s look at how we can set the properties of servlets.

3.4.2 Setting Servlet properties

Properties are ‘key-value’ pairs used for configuration, creating and initialization of a
servlet. For example in JSDK2.0 we can set the property like the following:

servlet.ss.code=SimpleServlet.class

Here the key is ‘servlet.ss.code’ and the value is ‘SimpleServlet’. The servlet name ‘ss’ in
this example enables the servlet running utilities to associate properties with the correct
servlets. This name ‘ss’ is used when accessing the servlets from other servlets.

The JSDK servlet-running utilities have two properties for servlets. They associate the
name that you choose for your servlet with:

• The class name of the servlet

To associates the servlet class name with the servlet we use

servlet. name.code= classname

• Any initialization parameters that the servlet requires

The value of servlet.name.initArgs property holds servlet’s initialization parameters.
The syntax of single initialization parameter is –

parameterName = parameterValue

example:

servlet.ss.initArgs = mainFile=examples/index.html

The servlet properties file could look like this –

servlet.ss.code = SimpleServlet
servlet.SimpleServlet.initArgs = mainFile=examples/ index.html

www.JavaEra.com

84

3.4.3 Test-run the Servlet

To test the servlets, first we must run the servletrunner utility that is available along with
JSDK2.0. The servletrunner is in jsdk2.0/bin directory. You can run the utility more easily
if this directory is on your search path. For example:

C:\> set path=c:\jsdk2.0\bin;%path%

To know what options are available for running the servletrunner you type at the
command prompt the following,

C:\> servletrunner -help
Usage: servletrunner [options]
Options:
 -p port the port number to listen on
 -b backlog the listen backlog
 -m max maximum number of connection handlers
 -t timeout connection timeout in milliseconds
 -d dir servlet directory
 -r root document root directory
 -s filename servlet property file name
 -v verbose output

To see the default values of these options, call servletrunner with –v option. The
servletrunner will run with its default values.

C:\> servletrunner -v
Server settings:

port = 8080
backlog = 50
max handlers = 100
timeout = 5000
servlet dir = ./examples
document dir = ./examples
servlet propfile = ./examples/servlet.properties

To test the example servlet ‘SimpleServlet’, save the class file in ‘jsdk2.0/examples’
directory and add the properties in the ‘jsdk2.0/examples/servlet.properties’ files. Now,
run the servletrunner by saying just, ‘servletrunner’ at the command prompt.

After running the servletrunner, open a browser and in the location window of the
browser, type the following line:

http://localhost:8080/servlet/SimpleServlet

To invoke the servlet, either from browser’s location window or through HTML tags, use
the same address given above.

3.5 Life Cycle of a Servlet

Each servlet has the same life cycle:

• A server loads and initializes a servlet
• The servlet handles zero or more client requests
• The server removes/unloads the servlet
 (some servers do this step only when they shut down)

www.JavaEra.com

85

3.5.1 Initializing a Servlet

When a server loads a servlet, the server runs the servlet’s init() method. Initialization
completes before client requests are handled and before the servlet is destroyed.

Even though most servlets are run in multi-threaded servers, servlets have no
concurrency issues during servlet initialization. The server calls the init() method once,
when the server loads the servlet, and will not call the init() method again unless the
server is reloading the servlet. The server can not reload a servlet until after the server
has destroyed the servlet by running the destroy() method.

The default initialization of the HttpServlet class initializes the servlet and logs the
initialization. To add initialization specific to your servlet, override the init(ServletConfig)
method. When you override the init method, follow these rules:

• If an initialization error occurs that renders the servlet incapable of handling client

requests, throw an UnavailableException. An example of this type of error is the
inability to establish a required network connection.

• Do not call the System.exit() method
• Save the ServletConfig parameter so that the getServletConfig method can return the

value. The simplest way to do this is to have your new init method call super.init().

If a servlet used a database, for example, the init method could try to open a connection
and throw the UnavailableException if it was unsuccessful. Here is pseudo-code for what
that init method might look like:

public class DataServlet extends HttpServlet {
 Connection con = null;

 public void init(ServletConfig config) throws
 ServletException {

 super.init(config);

 // Open a database connection to prepare for r equests
 try {
 databaseUrl = getInitParameter("databaseUrl");
 // get user and password parameters the same w ay
 con = DriverManager.getConnection(databaseUrl,
 user, password);
 } catch(Exception e) {
 throw new UnavailableException (this,
 "Could not open a connection to the dat abase");
 }
 }

 public void doGet(… … …) {
 … … …
 }
}

3.5.2 Handling Client requests

This part will be dealt in ‘3.7 Client/Server communication using Servlets ’.

3.5.3 Destroying a Servlet

www.JavaEra.com

86

The destroy() method provided by the HttpServlet class destroys the servlet and logs the
destruction. To destroy any resources specific to your servlet, override the destroy()
method. The destroy() method should undo any initialization work and synchronize
persistent state with the current in-memory state. The following example shows the
destroy method that accompanies the pseudo-code init method in the previous example:

public class DataServlet extends HttpServlet {

Connection con = null;
// the init method

// the service method

public void destroy() {
// Close the connection and allow it to be garbage
// collected

 con.close();
 con = null;
 }
}

A server calls the destroy() method after all service calls have been completed, or a
server-specific number of seconds have passed, whichever comes first. If your servlet
handles any long-running operations, service methods might still be running when the
server calls the destroy method. You are responsible for making sure those threads
complete.

3.6 The API Overview

There are two packages available for creating servlets:

javax.servlet package
javax.servlet.http pacakge

3.6.1 javax.servlet package

Here is a brief description of the javax.servlet core interfaces and classes:

interface Servlet

The Servlet interface defines standard amethods all servlets must implement. To
create a servlet, you typically extend either the GenericServlet class or its more
specialized descendent called HttpServlet. A server intializes a servlet by calling its
init method. This method pases to a servlet a ServletConfig object; it contains the
servlet’s startup configuration and initialization parameters. A server invokes the
service method to pass to the servlet requests for service; this method takes a
ServletRequest objects for its input and returns a ServletResponse object. Finally, a
server can kill a servlet by invoking its destroy method. You can call a servlet’s
getServletConfig method to obtain its ServletConfig object. You can invoke the
getServletInfo method to obtain a string containing information about the servlet – for
example its author, version an copyright.

interface ServletConfig

www.JavaEra.com

87

The ServletConfig interface gives a servlet access to its configuration data. The
server passes an object of his type to a servlet when it is first loaded. A service write
implementing this interface must write methods for the servlet to use to get its
initialization parameters and the context in which it is running. The getInitParameter
method returns a string containing the value of the named initialization parameter of
the servlet. The getInitParameterNames method returns the names of the servlet’s
initialization parameters as an enumeration of strings; It returns an empty
enumeration if there are no initialization parameters. The getServletContext method
returns a ServletContext object that contains this servlet’s context.

interface ServletContext

The ServletContext interface gives a servlet access to information about its
environment; it also allows it to log significant events. Servlet writers must decide
what data to log. The interface is implemented by servers and used by servlets. The
getAttributed method returns the value of the named attribute of the network service.
The getMimeType method returns the mime type of the specified file. The
getRealPath method applies alias rules to the specified virtual path and returns the
corresponding real path. The getServerInfo method returns the name and version of
the server under which this servlet is running. The getServlet method returns the
servlet of the specified name. The getServlets method returns an enumeration of
Servlet objects on this server. Finally, log lets you write a message to the servlet’s
log file.

class GenericServlet

The GenericServlet class implements both the Servlet and ServletConfig interfaces.
This class provides both a simple implementation of the life cycle methods init and
destroy, as well as the methods in the ServletConfig interface. It also implements the
log method as defined by the Servletcontext interface. Servlet writers must override
and implement the abstract service method.

interface ServletRequest

The ServletRequest interface is used to access data that is passed from the client to
the Servlet; objects that implement this interface are passed as an argument of the
service method. The data contained in a ServletRequest object includes parameter
names and values, attributes, and a ServletInputStream. The getAttribute method
returns the value of a named attribute in the request. The getContentLength method
returns the size of the request entity data; if not known it returns –1. The
getContentType method returns the Internet Media Type of the request entity data.
The getInputStream method returns an object of type ServletInputStream; you use it
as an input stream for reading the request body.

The getParameter method returns a string containing the value of the specified
parameter. The getParameterNames method returns the parameter names for this
request as an enumeration of strings. The getParameterValues returns the values of
the specified parameter for the request as an array of strings. The getProtocol
method returns the protocol andversion of the request. The getRemoteAddr method
returns the IP address of the client that sent the request. The getRemoteHost
method returns the fully qualified host name of the client that sent the request. The
getScheme method returns the scheme of the URL used in this request – for
example, http, https, or ftp. The getServerName method returns the host name of the

www.JavaEra.com

88

server that received the request. Finally, the getServerPort method returns the port
number on which the request was received.

interface ServletResponse

The ServletResponse interface is used by a servlet to return response data to the
client. A ServletResponse object is passed as an argument to the service method.
The getOutputStream method returns an output stream that a servlet uses to write
the response data. The setContentLength method is used by the servlet to set the
content length for this response. The setContentType method is used to set the
content type for this response.

class ServletInputStream

The ServletInputStream class provides an input stream that servlets use to read
incoming requests and data. This class defines an abstract readLine method. It lets
you read an array of bytes at the specified offset. The method reads into an array
either the number of characters you request or the number of characters before a
new line (\n) is encountered.

class ServletOutputStream

The ServletOutputStream class provides an output stream for writing servlet
responses. The overloaded print method lets you write to the stream basic Java
types such as booleans, characters, floats, and ints. The println method lets you
write these same basic types, followed by a CRLF.

3.6.2 javax.servlet.http package

Here is a brief description of the servlet HTTP interfaces and classes:

abstract class HttpServlet

The HttpServlet abstract class extends the GenericServlet with six new HTTP-related
methods. You must subclass this abstract class and override at least one method.
Typically, you will override doPost to handle HTTP POSTs and doGet to handle
HTTP GETs. If you need to manage resources held over the lifetime of a servlet, you
would need to override the inherited life cycle methods init and destroy. To support
HTTP 1.1 commands – such as OPTIONS, PUT, DELETE, or TRACE – you must
override the service method handle these additional HTTP methods directly. Note
that only the service method is public; it delegates calls to the other methods defined
in this interface. The getLastModified method facilitates the catching of GET
requests; it returns the time the requested entity was last modified.

interface HttpServletRequest

The HttpServletRequest interface represents an HTTP servlet request. It provides
methods to extract HTTP header information. The getAuthType method returns the
authentication scheme of the request. The getDateHeader method returns the value
of a date header field. The getHeader method returns the value of a header field.
The getHeaderNames method returns an enumeration of strings representing the

www.JavaEra.com

89

header names for this request. The getIntHeader method returns the value of an
integer header field. The getMethod returns the HTTP command. The getPathInfo
method returns the optional extra path information that follows the servlet’s path in
the request. The getPathTranslated method returns the extra path information
translated to a real path. The getQueryString method returns the query string part of
the servlet URI. The getRemoteUser method returns the name of the user making
this request. The getRequestURI method returns the request URI as a URL object.
Finally, the getServletPath method returns the part of the request URI that refers to
the servlet being invoked.

interface HttpServletResponse

The HttpServletResponse interface represents an HTTP servlet response. It defines
helper methods to dynamically generate an HTTP response; it also defines constants
for the HTTP return codes. You invoke sendError to return an error response to the
client using the specified status code and a default message. You invoke
sendRedirect to return a redirect response to the client specifying the new URL. You
invoke setDateHeader to add a date field to the response header; you must specify a
field name and a date value. You invoke setHeader to add a field to the response
header with a given name and integer value. You invoke setStatus to specify the
status code and a default message for this response. Finally, the containsHeader
method returns true if the response message header has a field with the name you
specify.

class HttpUtils

The HttpUtils class provides a useful collection of HTTP utility methods. The
getRequestURL method takes as its input an HttpServletRequest; it returns the URL
the client used to make the request. The parsePostData takes as its input a
ServletInputStream; it then parses it and returns the POST’s form data in a Hashtable
of name/value pairs. The parseQueryString method parses a query string and builds
a Hashtable of name/value pairs.

3.7 Client/Server communication with Servlets

An HTTP Servlet handles client requests through its service method. The service method
supports standard HTTP client requests by dispatching each request to a method (doGet,
doPost etc.) designed to handle that request. There are two objects in Servlet API that
represents the client’s request, ‘HttpServletRequest’ object, and Servlet’s response
‘HttpServletResponse’ object. These objects are provided to the service method and to
the methods (doGet, doPost etc.) that service calls to handle HTTP requests.

The service method delegates HTTP requests to the following methods:

• doGet, for handling GET, conditional GET, and HEAD requests
• doPost, for handling POST requests
• doPut, for handling PUT requests
• doDelete, for handling DELETE requests

The HttpServlet's service method also calls the doOptions method when the servlet
receives an OPTIONS request, and doTrace when the servlet receives a TRACE request.
The default implementation of doOptions automatically determines what HTTP options
are supported and returns that information. The default implementation of doTrace

www.JavaEra.com

90

causes a response with a message containing all of the headers sent in the trace request.
These methods are not typically overridden.

To handle HTTP requests in a servlet, extend the HttpServlet class and override the
servlet methods that handle the HTTP requests that your servlet supports. If you want to
handle GET requests, you have to override doGet method. If you want to handle POST
requests, you have to override doPost method. An example is given below:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class BooksServlet extends HttpServlet {

public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 IOException,ServletException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 out.println(“<html><head>”);

 out.println(“<title>Book Store</title>< /head>”);
 out.println(“<body>Enter the Book No. you want: “);
 out.println(“<form action=\”http://localhost:808 0/
 servlet/BooksServlet\” method=\”post\”>”);
 out.println(“<input type=text name=\”bookNo\”>”) ;
 out.println(“<input type=submit>”);
 out.println(“</form>”);
 out.println(“</body></html>”);
 out.close();
 }
}

Run the program using servletrunner utility. When you type the address of the servlet in
the location bar, you will get the output which may look like this:

1. The servlet extends the HttpServlet class and overrides the doGet method.
2. Within the doGet method, a HTML form, for accessing the book number, is sent to the

client via Writer object’s println method.
3. To respond to the client, the example doGet method uses a Writer from the

HttpServletResponse object to return text data to the client. Before accessing the
writer, the example sets the content-type header.

4. At the end of the doGet method, after the response has been sent, the Writer is
closed.

In the same way we can write even the doPost method also. First we have to extend the
HttpServlet class and override the doPost method. In doPost also we can get the
arguments by using getParameter. Set the content-type, get the PrintWriter object, send
the information through println method and then at the end close the Writer. An example
for doPost method extending the above example is given below:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class BooksServlet extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response) throws
 IOException,ServletException {
 // as in the above example…
 }
public void doPost(HttpServletRequest request,
 HttpServletResponse response) throws

www.JavaEra.com

91

 IOException,ServletException {
 response.setContentType(“text/html”);
 PrintWriter out = response.getWriter();
 out.println(“<html><head>”);

 out.println(“<title>Book Store</title></head>”);
 String bookno = req.getParameter(“bookNo”);
 out.println(“<body>You asked for Book No.“+book no);
 out.println(“</body></html>”);
 out.close();
 }
}

After submitting the query with 205 book number you will get the output which may look
like this:

3.7.1 Threading issues

www.JavaEra.com

92

HttpServlets are typically capable of serving multiple clients concurrently. If the clients
are sharing a common resource, say a database, then you have to create a servlet that
handles only one client request at a time.

For this you have to implement SingleThreadModel interface in addition to extending the
HttpServlet class. SingleThreadModel doesn’t have any methods. So, you need not write
any extra methods. Simply implement the SingleThreadModel interface and the server
will make sure that your servlet runs only one service method at a time. The code may
look like this if you are implementing SingleThreadModel:

public class BookServlet extends HttpServlet implements
 SingleThreadModel {

 public void doGet(HttpServletRequest req, HttpServ letResponse
 res) throw IOException,ServletException {

//implementation
 }
}

Instead of implementing the interface SingleThreadModel, you can even write a
‘synchronized’ block when you are accessing a shared resource.

3.8 Database Connectivity

This part assumes that the reader has basic knowledge of JDBC API, and has worked
with connecting to database, executing SQL queries, working with results etc.

Most of the web sites on the Internet have some sort of database connectivity. Database-
backed web sites are difficult to develop especially Internet applications. Servlets, with
their enduring life cycle, and JDBC, are an efficient solution for web developers who want
to develop database-backed web sites. We can connect to databases using four different
types of JDBC drivers presently available viz., JDBC-ODBC Bridge driver, Native API
Pure Java driver, Native Protocol Pure Java driver and Native Protocol Partly Java driver.

Servlets, especially Servlets that access a database, finds place in the middle tier. A
middle tier (commonly referred to as middleware) is something that helps connect one
end point to another and along with the way adds a little something, like business logic.
Middleware can improve efficiency by spreading the processing load across several back-
end servers. On the Web, middle tiers are often implemented using Servlets.

The biggest advantage for Servlets with regard to database connectivity is that the Servlet
life cycle allows Servlets to maintain open database connections. In CGI script, the
program has to reestablish its connection for every invocation. Whereas, in Servlets we
need to establish the connection only once. Another advantage of Servlets over CGI and
many other technologies is that JDBC is database-independent. A Servlet written to
access a Sybase database can, with a two-line modification or a change in a properties
file, begin accessing an Oracle database.

3.8.1 Writing a simple database servlet

www.JavaEra.com

93

The following example shows a very simple database servlet that uses the JDBC-ODBC
Bridge driver to perform a simple query, printing the details of all departments listed in a
MS Access Database table (in this example DEPT). Please see the example below:

/** This database servlet uses JDBC-ODBC Bridge Dri ver */
import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class EmpList extends HttpServlet {
 Connection con = null;
public void init(ServletConfig config) throws
 ServletException {

super.init(config);
 try{
 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con=DriverManager.getConnection("jdbc:odbc:dep");
 }catch(Exception e) {
 e.printStackTrace();
 }
} //init method ends

public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException,
 ServletException {

 Statement stmt = null;
 ResultSet rs = null;

 res.setContentType("text/plain");
 PrintWriter out = res.getWriter();

 try{
 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT * FROM DEPT");
 out.println("DEPTNO \t DNAME \t LOC");

 while(rs.next()) {
out.println(rs.getString(1)+"\t"+
rs.getString(2)+"\t"+rs.getString(3));

 }
 out.close();
 }catch(Exception e) {
 e.printStackTrace();

 }
 } //doGet method ends

public void destroy() {
 try{
 con.close();
 }catch(Exception e) {
 e.printStackTrace();
 }
 }//destroy method ends

}//servlet program ends

 Before testing the above servlet, we have to do the following steps –

- Create a table in MS Access Database by name DEPT with three fields
(deptno, dname, loc) and put some data in that table.

- Create a DSN by name ‘dep’ in ControlPanel/ODBC Data Sources.
- Attach the database you have created as source of the DSN.

While writing the above program observe the following points –

www.JavaEra.com

94

- We have made the connection in init() method. So, the connection is made
only once for this servlet.

- Every time a request is made to this servlet, it creates a Statement object and
accesses the ResultSet by executing the query given.

- It sends the results in a plain text through PrintWriter object’s println method.
- At the end, the servlet is unloaded in destroy() method and closes the

Connection object.

One more example given here to connect to the Oracle database using Oracle’s Thin
driver.

/** This database servlet uses Oracle thin Driver
 ** running at for example 210.250.251.1 at port No .1521
 */

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class EmpList extends HttpServlet {
 Connection con = null;

public void init(ServletConfig config) throws
 ServletException {

super.init(config);
 try{
 Class.forName("oracle.jdbc.driver.OracleDriver");

 con=DriverManager.getConnection("jdbc:oracle:thin:
 @210.250.251.1:1521:orcl”,”scott”,”tiger”);
 }catch(Exception e) {
 e.printStackTrace();
 }
} //init method ends

public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException,
 ServletException {

 Statement stmt = null;
 ResultSet rs = null;

 res.setContentType("text/plain");
 PrintWriter out = res.getWriter();

 try{
 stmt = con.createStatement();

 rs = stmt.executeQuery("SELECT * FROM DEPT");
 out.println("DEPTNO \t DNAME \t LOC");

 while(rs.next()) {
out.println(rs.getString(1)+"\t"+
rs.getString(2)+"\t"+rs.getString(3));

 }
 out.close();
 }catch(Exception e) {
 e.printStackTrace();

 }
 } //doGet method ends

public void destroy() {
 try{
 con.close();
 }catch(Exception e) {
 e.printStackTrace();
 }
 }//destroy method ends

}//servlet program ends

www.JavaEra.com

95

 The output of the programme, when run in the browser, may look like this:

3.9 Inter-Servlet Communication

There can be three reasons for inter-servlet communication. Those three reasons are –

- Sharing resources among servlets
- Servlet reuse
- Manipulating other servlets

3.9.1 Sharing resources among servlets

There may be some situations where you need to share some information along with
other servlets and need to collaborate with other servlets running on the same server.
Information can be shared among servlets by passing the information directly from one
servlet to another through method invocations. This approach requires each servlet to
know the other servlets with which it is collaborating. Resource sharing among servlets
can be done through two different ways:

- through System Properties List
- through a Shared Object.

System Properties List

This is a simple way to share information among servlets running on the same server. In
java.lang.System there is a method called getProperties() which gives access to Java’s
system-wide properties list in a java.util.Properties object. The Properties object can hold
not only the System properties but also application specific properties. Servlets can use
these application specific properties to hold the information they need to share. A servlet
can add property to the system properties list by the following method:

www.JavaEra.com

96

System.getProperties().put(“key”,”value”);

Another servlet running on the same JVM can later get the value of the property by
calling:

String value = System.getProperty(“key ”);

As the java.util.Properties class is extended from Hashtable, we can treat the Properties
object as a Hashtable object when storing keys and values and we can add objects to
these properties; like –

System.getProperties().put(keyObject,valueObject);

An example will make it clear, how to use the Properties object to store the information
shared by different servlets.

/** this servlet gets the system properties and
 ** creates a new property with a name and value*/

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class PropServlet extends HttpServlet {

public void doGet(HttpServletRequest
req,HttpServletResponse res) throws
IOException,ServletException {

 try{
System.getProperties().put(“breads.count”,
“30”);

 }catch(Exception e) {e.printStackTrace();}
 }
 }

Now, we will see another servlet, which accesses the information by getting the properties
list.

/** this servlet gets the value of a system propert y
 ** by giving its key */

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class ListPropServlet extends HttpServlet {

public void doGet(HttpServletRequest
req,HttpServletResponse res) throws
IOException,ServletException {

 try{
 PrintWriter out = res.getWriter();
 String bc = System.getProperty(“breads.coun t”);
 out.println(bc);
 }catch(Exception e) {e.printStackTrace();}
 }
 }

Shared Object

www.JavaEra.com

97

Shared Object is another concept through which servlets can share information. A
shared object can hold the pool of shared information and make it available to each
servlet as needed.

Though system Properties list is also an example of Shared object, it will not have
capability to incorporate business logic. But, a shared object incorporates a fair amount
of business logic or rules for manipulating the object’s data. A shared object can enforce
data integrity by protecting the actual data by making it available through well-defined
methods. It can trigger events to handle certain conditions. This capability isn’t available
with the Properties list.

An example of shared object will give a clear picture of how we can implement servlet
collaboration.

public class CoffeeInventory {

 private CoffeeInventory() {}

 private static CoffeeInventory instance = new
 CoffeeInventory();

 public static CoffeeInventory getInstance() {
 return new CoffeeInventory();
 }

 private int milk = 0;
 private int sugar =0;

 public void addMilk(int x) { milk+=x; }
 public void addSugar(int x) { sugar+=x; }

 synchronized public boolean coffeeAvailable() {
 if(milk > 0 && sugar > 0) {
 milk--;
 sugar--;
 return true;
 }
 else
 return false;
 }
}

This CoffeeInventory object maintains an inventory count for milk and sugar. It holds the
ingredients with private instance variables. One servlet, which is used to add the
ingredients, may use this CoffeeInventory object as in the example given under:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class AddIngredients extends HttpServlet {

 CoffeeInventory ci = CoffeeInventory.getInstance ();

 Public void doGet(HttpServletRequest req,

HttpServletResponse res) throws
IOException,ServletException {

 res.setContentType(“text/html”);
 PrintWriter out = res.getWriter();

 int milk = 10;

www.JavaEra.com

98

 int sugar = 20;

 ci.addMilk(milk);
 ci.addSugar(sugar);

 out.println(“<html><body>”);
 out.println(“<h1>Ingredients Added are as

follows</h1>”);
 out.println(“<h4>Milk : “+milk+”</h4>”);
 out.println(“<h4>Sugar : “+sugar+”</h4>”);
 out.println(“</body></html>”);
 }
}

Test-run the above servlet and you will get the following output in the web-browser:

 Ingredients added are as follows

Milk : 10
Sugar : 20

Now, some other servlet, for example ‘GetIngredients’, may want to know how many
ingredients are available to make the coffee.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class GetIngredients extends HttpServlet {

private CoffeeInventory ci =
CoffeeInventory.getInstance();

public void doGet(HttpServletRequest req,
 HttpServletResponse res)throws
 IOException,ServletException{

 res.setContentType(“text/html”);
 PrintWriter out = res.getWriter();

 out.println(“<html><body>”);
 if(ci.coffeeAvailable())

out.println(“Coffee will be served within 2 minutes ”);
 else
 out.println(“Sorry ! Coffee not available”);
 out.println(“</body></html>”);
 }
}

If the ingredients are available then the servlet will give a response saying ‘Coffee will be
served within 2 minutes’, otherwise if they are not available then it says ‘Sorry! Coffee not
available’. To know the effect write and compile all the three programs and follow these
steps:

- First, run the AddIngredients servlet.
- Next, run the GetIngredients servlet. You will get the response that the

coffee will be served within 2 minutes.
- Again run the GetIngredients servlet for three more times. The third time you

run the servlet, you have to get the result that coffee is not available.
(Because, we have added milk of 10 points only. So, it has to say no when
we are asking for coffee for the fourth time.)

www.JavaEra.com

99

3.9.2 Servlet reuse

Inter-servlet communication allows one servlet to reuse the abilities of another servlet.
For this purpose we can call the other servlet running on the same server with the
ServletContext’s getServlet() method. But, the problem comes where the called servlet is
not yet been loaded into the server. So, the calling servlet has to ask the server to load
the called servlet and then access it through getServlet() method. But, servlets cannot
control the servlet life cycle, for themselves or for other servlets. But, there is an
alternative solution for this problem. A servlet can open an HTTP connection to the
server in which it is running, ask for the unloaded servlet, and effectively force the server
to load the servlet, and then get the instance of the servlet using getServlet() method. An
example is given here under:

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class GetOtherServlet extends HttpServlet {
 public void init(ServletConfig config) throws

ServletException {

 super.init(config);
 }

 public void doGet(HttpServletRequest req,

HttpServletResponse res) throws
ServletException,IOException {

 ServletContext context = getServletContext();
 OtherServlet os =

(OtherServlet) context.getServlet(“OtherServlet”);
 if(os != null) {
 os.doGet(req,res);
 }
 else {
 Socket socket = new

 Socket(req.getServerName(),req.getServerPort());
 socket.setSoTimeout(4000);
 PrintWriter out =

 new PrintWriter(socket.getOutputStream(),true);
 out.println(“GET /servlet/OtherServlet HTTP/1.0”);
 out.println();
 try{
 socket.getInputStream().read();
 }catch(InterruptedIOException e) {
 e.printStackTrace();
 }

 out.close();
 os = context.getServlet(“OtherServlet”);
 os.doGet(req,res);
 }

 }
}

3.9.3 Manipulating other servlets

Manipulating other servlets, loaded on the same server, involves performing some task
on one or more of them. A servlet can obtain information about other servlets through the
ServletContext object. If your servlet have to call another servlet, you can do it through
two ways –

www.JavaEra.com

100

- A servlet can make an HTTP request of another servlet.
- A servlet can call another servlet’s public methods directly, if the two servlets

run within the same server.

Making HTTP request

A servlet can make an HTTP request of another servlet by opening a connection to a
URL. To do this, we must know the name of the servlet that you want to call and the
parameters, if any, to be passed to such servlet. Using URL we can access another
servlet as explained in the following example:

import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;
import java.io.*;

public class Sservlet extends HttpServlet {
 public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException,Serv letException {
 try{
 PrintWriter out = res.getWriter();
 URL ss =
 new URL("http://localhost:8080/servlet/Simp leServlet");
 BufferedReader in = new BufferedReader(new
 InputStreamReader(ss.openStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null)
 out.println(inputLine);
 }catch(Exception e) {e.printStackTrace();}
 }
}

Steps –

- First construct an URL object with the url that is used to call the servlet.
- Create a BufferedReader object by passing an InputStreamReader object.
- Now, read the response directly from the BufferedReader object and
- Send the response to the client using PrintWriter’s println method.

Calling public methods

 To call another servlet’s public methods directly, we must:

- know the name of the servlet
- gain access to that servlet’s Servlet object.
- Call the servlet’s public methods.

After knowing the name of the servlet that you want to call, gain access to the Servlet
object by using the ServletContext’s getServlet method. Get the ServletContext object
from the ServletConfig object stored in the Servlet object. Observe the following
example:

public class BooksServlet extends HttpServlet {

 public void doGet (HttpServletRequest request,
 HttpServletResponse response)throws
 ServletException,IOException {
 ...

 DataBase database =(DataBase)getServletConfig()

www.JavaEra.com

101

 .getServletContext().getServlet("b ook");
 ...
 }
}

After getting the Servlet object, you can call any of the public methods of that servlet.
Suppose the DBServlet has a public method called getData(), then we can invoke that
method directly on the DBServlet’s object that was returned by the getServlet method of
ServletContext’s object.

String data = database.getData();

NOTE: You must exercise caution when you call another servlet's methods. If the servlet
that you want to call implements the SingleThreadModel interface, your call could violate
the called servlet's single threaded nature.

3.10 Applet – Servlet Communication

Sometimes, applets need to communicate with the server. For example, the
administration applet that manages the Java Web Server, though executed on the client
side, configures the server. To do this, the applet need to communicate with the server
constantly.

An untrusted applet cannot connect to any other server machine, except to the server
from which it was downloaded. Any attempt to connect to another machine results in a
SecurityException. So, there is only once option, i.e. connecting to the server from which
the applet was downloaded. The applet can connect to the server in several different
ways. Before servlets came into picture with the introduction of JDK1.1, the applets used
to connect to the server using HTTP and Raw socket connections.

- In HTTP connection, the applet establishes connection to a CGI program on the
server and sends a query string or POST data to retrieve response from the CGI
program.

- In Raw socket connection, the applet establishes raw socket connection to a non-

HTTP server running on the server machine. The non-HTTP server listens to a
particular port and communicates with the applet using any custom protocol.

But, both these approaches have advantages as well as disadvantages. Let’s see them
in detail:

HTTP Connection Raw socket Connection
Advantages Disadvantages

Easy to write Difficult to write
Most firewalls allow HTTP connections.
So, it works for applets running behind
firewall.

Most firewalls don’t allow raw socket
connections. So, it fails for applets running
behind firewalls.

It allows Java applet to communicate
with a program written in any language.
So, the CGI program can be written in
any language Perl,C etc.

Both client as well as server programs
must be written in Java. (Of course, we
can write in C language, but it is easier to
write in Java)

An applet can communicate with a
secure server using the encrypted
HTTPS (HTTP+SSL) protocol.

Here, it may require the development of a
custom protocol.

Disadvantages Advantages
It is slow, because of request / response More faster, because, a non-HTTP server

www.JavaEra.com

102

paradigm. There is a standard delay in
launching and initializing the CGI
program for every request.

can be written to handle a request
immediately without launching external
CGI program.

Only the applet can initiate the
communication.

Allows bi-directional, sustained
communication.

Generally, it is a standard approach for applets to use HTTP to connect to CGI programs
on the server. It’s easy, and it works for all types of browsers, even browsers running
behind firewalls. The introduction of Java servlets and object serialization has given new
life to these traditional applet-server communication techniques. Java object serialization
has simplified the issues involved with formatting responses. If both the applets and
servlets are written in Java, then they can exchange Java objects, which provides easy
type safety. Two more important features included in JDK1.1 have an impact on applet-
server communication: JDBC and RMI.

Java applets can use JDBC to communicate with a database on the server. Instead of
applet directly connecting to the database, it is better if the applet connects to a servlet
that handles the database communication on its behalf.

Java RMI API allows an applet to invoke the method of a Java object executing on the
server machine, and in some cases, it also allows the object on the server machine to
invoke the methods of the applet. Using RMI has some advantages:

- With RMI, there are no requests and responses, just method invocations.
- It allows server objects to make callbacks to the methods of the applet.
- It can be made to work through firewalls. Though generally RMI transport

layer relies on direct socket connections, when applet executes behind a
firewall, socket connections will fail. Then RMI automatically begin operating
entirely within the HTTP protocol.

However, there are some disadvantages of using RMI in applet-server communication:

- It is complicated. RMI communication uses Stubs, Skeletons and a Naming
registry etc.

- It’s supported in few browsers. (Netscape 4.0)
- It can be used only by Java clients.

Which approach to choose for applet-server communication depends on various factors.
But, the best solution is to use every solution, with servlets. Servlets make it possible to
combine the HTTP, non-HTTP, and RMI applet-server communication techniques,
supporting them all with a single servlet.

An example will give a clear idea of how an applet can communicate with a servlet.

//Applet – ServletApplet.java

import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;

public class ServletApplet extends Applet implement s

ActionListener {

 TextField t1;
 Button b1;

 public void init() {

www.JavaEra.com

103

 t1 = new TextField(30);
 b1 = new Button("receive message from servlet");
 add(t1);
 add(b1);
 b1.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 try{

URL url = new
URL("http://localhost:8080/servlet/AppletServlet?op eration
=send");

 URLConnection con = url.openConnection();
 con.setDoInput(true);
 con.setDoOutput(true);
 showStatus("sending data");
 con.connect();
 DataInputStream in=
 new DataInputStream(new BufferedInputStream

(con.getInputStream()));
 String response = in.readLine();
 t1.setText(response);
 showStatus("received message");
 in.close();
 }catch(Exception e) {
 showStatus(e.getMessage());
 }
 }
 }

//HTML file – ServletApplet.html

<HTML>
<APPLET CODE=ServletApplet WIDTH=400 HEIGHT=150></A PPLET>
</HTML>

//Servlet – AppletServlet.java

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AppletServlet extends HttpServlet {

 public void init(ServletConfig config) throws
 ServletException {
 super.init(config);
 }

 public void service(HttpServletRequest req,

HttpServletResponse res) throws
IOException,ServletException {

 String st = req.getParameter("operation");

 if(st.equals("send")) {
 res.setContentType("text/plain");
 PrintWriter pw = res.getWriter();
 pw.println("This is an example for appletservlet

communication");
 pw.close();
 }
 }
}

www.JavaEra.com

104

Now, to test the above applet and servlet, run the applet in an appletviewer. You will see
the following after running the program. Run the program

Let’s look at an other example that shows an applet contacting a database through a
servlet. The applet’s code is shown in DataBaseApplet.java and servlet’s code is shown
in DataBaseServlet.java. To contact the database, the servlet uses ‘thin’ driver. It
contacts the Oracle database and sends the results to the requesting program in this
case an applet.

//Here is the code for the applet that requests a s ervlet. We
have to run this applet using appletviewer.

/** <applet code=DataBaseApplet.class width=250 hei ght=150>
 ** </applet> */

import java.awt.*;
import java.applet.*;
import java.awt.event.*;
import java.net.*;
import java.io.*;
import java.util.*;

public class DataBaseApplet extends Applet implemen ts
 ActionListener {

 TextField tf1,tf2,tf3;
 Button b1,b2;

 public void init() {
 setLayout(new GridLayout(4,2));
 add(new Label("Department No."));
 tf1 = new TextField(20);
 add(tf1);
 add(new Label("Department Name"));
 tf2 = new TextField(20);
 add(tf2);
 add(new Label("Location"));
 tf3 = new TextField(20);
 add(tf3);

www.JavaEra.com

105

 b1 = new Button("List");
 add(b1);
 b2 = new Button("Clear");
 add(b2);
 b1.addActionListener(this);
 b2.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 if(ae.getSource()==b1) {
 try{

 URL url = new URL("http://localhost:8080/servle t/
DataBaseServlet?deptno="+tf1.getText());

 URLConnection con = url.openConnection();
 con.setDoInput(true);
 con.setDoOutput(true);
 con.connect();
 DataInputStream in= new DataInputStream
 (new BufferedInputStream (con.getInputStre am()));
 String response = in.readLine();
 StringTokenizer stkn=new StringTokenizer(respo nse,"-");
 while(stkn.hasMoreElements()) {
 tf1.setText(stkn.nextToken());
 tf2.setText(stkn.nextToken());
 tf3.setText(stkn.nextToken());
 }
 in.close();
 }catch(Exception e) {
 showStatus(e.getMessage());
 }
 }
 else if(ae.getSource()==b2) {
 tf1.setText("");
 tf2.setText("");
 tf3.setText("");
 }
 }
}

//Here is the code for servlet that contacts the Or acle database
through thin driver and sends the response.

import java.io.*;
import java.sql.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DataBaseServlet extends HttpServlet {

 Connection con = null;

public void init(ServletConfig config) throws
 ServletException {

super.init(config);
try{
Class.forName("oracle.jdbc.driver.OracleDriver");
con=DriverManager.getConnection("jdbc:oracle:thin:

@210.250.251.1:1521:orcl","scott","tiger");
}catch(Exception e) {

 e.printStackTrace();
 }
 }

public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws
 IOException,ServletException {

www.JavaEra.com

106

Statement stmt = null;
ResultSet rs = null;
res.setContentType("text/plain");
PrintWriter out = res.getWriter();
try{
stmt = con.createStatement();
String deptno = req.getParameter("deptno");
rs = stmt.executeQuery("SELECT * FROM DEPT WHERE

DEPTNO="+deptno);
rs.next();
out.println(rs.getString(1)+"-"+rs.getString(2)

+"-"+rs.getString(3));
}catch(Exception e) {

 e.printStackTrace();
 }

out.close();
}

public void destroy() {
 try{
 con.close();

 }catch(Exception e) {
 e.printStackTrace();
 }

 }
}

After running the example above, the applet will look like this:

3.11 Session Tracking

HTTP is a stateless protocol. It cannot recognize that sequences of requests are all from
the same client. To overcome such situation, Session tracking was introduced. Session
tracking is a mechanism that servlets use to maintain state about a series of requests
from the same user i.e. requests originating from the same browser, across some period
of time. There are four different options for tracking a session. They are as follows:

- Hidden form fields
- URL Rewriting
- HttpSession object
- Cookies

3.11.1 Hidden Form Fields

One of the simplest ways to support session tracking is to use hidden form fields. As the
name suggests, these fields are hidden (not displayed in the client’s browser) in an HTML
form. First they are created by the servlet and sent to the browser, and then the client

www.JavaEra.com

107

sent them back to the server when the form that contains them is submitted. The syntax
of HTML hidden form fields is like this:

<form action= ’/servlet/GetWelcome’ method=’post’>
. . .
<input type=hidden name=’name’ value=’xyz’>
<input type=hidden name=’session’ value=’123’>
. . .
</form>

For a servlet, which receives the form data, there is no difference between a hidden field
and a visible field. The following example will show you how to send hidden form fields to
the client for tracking his session. Taking the data of the form is same as what we have
done previously.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class GetHiddenFields extends HttpServlet {

 public void doGet(HttpServletRequest req,
 HttpServletResponse res) throws IOException,
 ServletException {

 res.setContentType(“text/html”);
 PrintWriter out = res.getWriter();

 out.println(“<html><body>”);
 out.println(“<form action=

 \” http://localhost:8080/servlet/GetWelcome\ ”
 method=\”get\”>”);

 out.println(“<input type=hidden name=\”name\”
 value=\”javapoint\”>”);
 out.println(“<input type=submit value=Get Welc ome>”);
 out.println(“</form>”);
 out.println(“</body></html>”);
 }
}

3.11.2 URL Rewriting

Sometimes, when the users are surfing with really old browsers without cookie support,
the programmer has to use URL rewriting for tracking the user’s session. URL Rewriting
is another way to support anonymous session tracking. With URL rewriting, every local
URL the user might click on, is dynamically modified, or rewritten, to include extra
information. The extra information can be in the form of extra path information, added
parameters, or some custom, server-specific URL change. Note that you cannot use URL
rewriting with static HTML pages (all pages must be dynamic), due to the fact that the
URL must be encoded for each user to include the session ID.

The following servlet will illustrate URL rewriting method of session tracking.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class RewritingServlet extends HttpServlet {

 public void doGet(HttpServletRequest req,

www.JavaEra.com

108

HttpServletResponse res) throws IOException,
ServletException {

 res.setContentType(“text/html”);
 PrintWriter out=res.getWriter();

 out.println(“<head><title>Rewriting
 Example</title></head>”);
 out.println(“<body>”);

 //Get the current session id, or generate a new on e

 String sessionid = req.getPathInfo();
 if(sessionid == null) {
 sessionid = generateSessionId();
 }
 out.println(“<form action=\”servlet/ShoppingCart/”
 +sessionid + “\” method=post>”);
 out.println(“input type=submit value=\”Add More
 Items\”>”);
 out.println(“</form>”);
 out.println(“</body></html>”);
 }

 private static String generateSessionId() {
 String uid = new java.rmi.server.UID().toString();
 return java.net.URLEncoder.encode(uid);
 }
}

After running the above servlet in the browser, you may see a button in the browser that
was returned by the servlet as part of its response. The output figures may look like the
following:

When you press the button may see a string something like the following in the location
object:

http://localhost:8080/servlet/servlet/ShoppingCart/ 1f0d19%3Adaeb33
89ec%3A-8000

www.JavaEra.com

109

3.11.3 Cookies

A Cookie is a keyed piece of data that is created by the server and stored by the client’s
browser. Browsers maintain their own list of cookies. When a browser receives a cookie,
it saves the cookie and thereafter sends the cookie back to the server each time it
accesses a page on that server. Because a cookie’s value can uniquely identify a client,
cookies provide a very viable solution for session tracking. For example, let’s assume
that a user visits an online store. A cookie can save the user information such as name,
address etc. A user need not enter this data each time he/she visits the store.

A server can provide one or more cookies to a client. Browser is expected to support
twenty cookies per host, of at least four kilobytes each. Multiple cookies can have the
same name. For example, a servlet could send two cookies with headers named
BookToBuy one could have the value 304qty1, while the other could have a value
301qty3. These cookies would indicate that the user wants to buy one copy of the book
with stock number 304, and three copies of the book with stock number 301.

Cookies that a client stores for a server are returned by the client to that server and only
that server. A server can contain multiple servlets, and because cookies are returned to a
server, these multiple servlets running on that server can share cookies. Let’s know how
cookies work, by seeing a simple example:

The following HTML file will give a text field and submit button and prompts for entering
some value for a cookie. When you submit the value, it will invoke a servlet called
AddCookieServlet at the server side. The servlet program is given here under:

<HTML>
<BODY>
<FORM NAME="Form1" METHOD="post"
 ACTION="http://localhost:8080/servlet/AddCookieSer vlet">
Enter the value for a cookie
<INPUT TYPE=textbox NAME="data" SIZE=25 VALUE="">
<INPUT TYPE=submit VALUE="submit">
</FORM>
</BODY>
</HTML>

The following servlet program will get the value of parameter called ‘data’ from the above
HTML form. And creates the cookie value with that value. Sends it back to the client the
value given by the client. That value is written to the client’s machine through the
PrintWriter object’s println method. To send a cookie, follow these steps:

- Instantiate a Cookie object
- Set any attributes
- Send the cookie

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddCookieServlet extends HttpServlet{

public void doPost(HttpServletRequest req ,
HttpServletResponse res) throws ServletException,IO Exception
{

//get a parameter from the HTTPrequest
String data=req.getParameter("data");

www.JavaEra.com

110

// create a cookie
Cookie c=new Cookie("MYCookie",data);
// add the cookie to the response
res.addCookie(c);
//write the output to the browser
res.setContentType("text/html");
PrintWriter pw=res.getWriter();
pw.println(data);
pw.close();
}

}

The above servlet, when run, will send a cookie to the browser. So, now the browser is
containing a cookie. Now, any servlet running on the same server can get the information
about the cookie by following the steps given here under:

- Retrieve all the cookies from the user’s request
- Find the cookie or cookies with the name that you are interested in, using

standard programming techniques
- Get the value of the cookies that you found

The following servlet will illustrate the procedure to get the cookies’ information from the
browser.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetCookiesServlet extends HttpServlet {

public void doGet(HttpServletRequest req,
HttpServletResponse res)throws ServletException,IOE xception
{

//Get cookies from header of HTTP Request
Cookie[] cookies=req.getCookies();

//Display these cookies
res.setContentType("text/html");
PrintWriter pw=res.getWriter();
for(int i=0;i<cookies.length;i++){
String name=cookies[i].getName();
String value=cookies[i].getValue();
pw.println("name="+name+" : value="+value);
}
pw.close();
}

}

Setting Cookie attributes

The Cookie class provides a number of methods for setting a cookie’s values and
attributes.

setComment(String purpose)

The cookie’s purpose will be described using this comment.

setDomain(String pattern)

www.JavaEra.com

111

The cookie should be presented only to hosts satisfying this domain name
pattern. Example: setDomain(“.foo.com”)

setMaxAge(int expiry)

Sets the maximum age of the cookie. The cookie will expire after that many
seconds have passed. If a zero value is passed to the cookie then it will be
deleted.

setPath(String uri)

The cookie should be presented only with requests beginning with this URL.

setSecurity(boolean flag)

Indicates to the user agent that the cookie should only be sent using a secure
protocol.

setValue(String newValue)

Sets the value of the cookie.

setVersion(int v)

Sets the version of the cookie protocol used when this cookie saves itself.

NOTE:

- While creating a cookie, you should not use white spaces and any of these

following characters:

[] () = , “ / ? @ : ;

- Create the cookie before accessing the Writer. (Because cookies are sent to

the client as a header, and headers must be written before accessing the
Writer).

3.11.4 HttpSession object

It is not always necessary for a servlet to manage its own sessions using the techniques
we have just discussed above. The Servlet API provides several methods and classes
specifically designed to handle session tracking on behalf of servlets. In other words,
servlets have built-in session tracking.

Every user of a site is associated with a javax.servlet.http. HttpSession object that
servlets can use to store or retrieve information about the user. You can save any set of
arbitrary Java objects in a session object.

To track the session, the steps to be followed are as follows:

- Get a session (an HttpSession) for a user.
- Store or get data from the HttpSession object.
- Invalidate the session (optional)

Obtaining a session

www.JavaEra.com

112

The getSession method of the HttpServletRequest object returns a user’s
session. When you call the method with its create argument as true, the
implementation creates a session if necessary. To properly maintain the session,
you must call getSession before any output is written to the response. The
servlet gets the session object by calling the method as follows:

 HttpSession HttpServletRequest.GetSession(true);

Storing and Getting data from a Session

The HttpSession interface provides methods that store and return:

- Standard session properties, such as a session identifier.
- Application data, whichi is stored as a name-value pair, where the name is a

String and the value is an object in the Java programming language.

We can store data to a session like the following:

HttpSession session = request.getSession(true);
ShoppingCart cart = new ShoppingCart();
session.putValue(session.getId(),cart);

We can retrieve the data from a session like the following:

ShoppingCart cart =
(ShoppingCart) session.getValue(session.getId());

Invalidating the Session

To invalidate a session means to remove the HttpSession object and its values from the
system. A user’s session can be invalidated manually or, depending on where the servlet
is running, automatically.

To manually invalidate a session, use the session’s invalidate method. Some
applications have a natural point at which to invalidate the session. To invalidate the
sessions manually do as following:

cart = (ShoppingCart)

session.getValue(session.getId());
//clear shopping cart by invalidating the session
session.invalidate();

The following example will give you a clear idea of how to track the session using
HttpSession object.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;
import java.util.*;

public class HttpSessionServlet extends HttpServlet {

 public void init(ServletConfig config) throws
ServletException {
 super.init(config);
 }

 // process the Http Get request, this method will

// handle the checkout

www.JavaEra.com

113

 public void doGet(HttpServletRequest

 req,HttpServletResponse res) throws
 IOException,ServletException {

 String[] movies = null;
 //get a handle to HttpSession object
 HttpSession session = req.getSession(true);
 if(session != null) {
 movies = (String[])
 session.getValue("Movies ");
 }
 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<html>");
 out.println("<head><title>Session
 Servlet</title></head>");
 out.println("<body>");
 out.println("Thank You");

 //iterate over the movie array

 for(int i=0; i<movies.length; i++) {
 out.println(movies[i]);
 }
 out.println("</body>");
 out.println("</html>");
 out.close();
 }

 //process the Http Post request

 public void doPost(HttpServletRequest
 req,HttpServletResponse res) throws
 IOException,ServletException {

 // parse the movies selected
 String movies[] =
 req.getParameterValues("Movies ");

 //get a handle to HttpSession object

 HttpSession session = req.getSession(true);
 if(session != null) {
 session.putValue("Movies",movies);
 }

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();
 out.println("<html>");
 out.println("<head><title>Session
 Servlet</title></head>");
 out.println("<body>");
 out.println("Thank You");

 //iterate over the movie array

 for(int i=0; i<movies.length; i++) {
 out.println(movies[i]);
 }

 //create a form to submit an order

 out.println("<form
 action=\"http://localhost:8080/
 servlet/HttpSessionServlet\"

www.JavaEra.com

114

 method=\"get\">");
 out.println("<input type=\"submit\" name=\"add\"
 value=\"Proceed to checkout\">");
 out.println("</form>");
 out.println("</body>");
 out.println("</html>");
 out.close();
 }
}

4 Java Web Server

WHAT

JavaSoft, being a winner in Java when it comes to server development and server-side
programming, developed Java Server Toolkit and Service API. The Java Server
Toolkit is a server framework from which other servers can be developed. The Java
Server Toolkit is a server framework from which other servers can be developed. One
of the servers developed from this framework is the Java Web Server, formerly named
Jeeves.

The Java Server Toolkit is a framework for building Internet and Intranet servers. It
implements the functions that are common to many servers:

• It listens on a port for connection requests.
• It accepts connection requests.
• It creates threads to handle the requests.
• It hands the connections to the threads for processing.
• It manages the threads and connections.

Besides providing these basic server functions, the Java Server toolkit makes it easier
to integrate the following advanced capabilities into the servers you develop:

• Web-based remote administration
• Authentication and access controls
• Secure Socket Layer (SSL)
• Servlets support
• HTTP 1.0 support
• Dynamic Web page generation

The Java Server Toolkit provides a framework for developing Java-based server
software. This framework was used to develop Java Web Server. Java Web Server is a
top-of-the-line, fully HTTP 1.1 compliant Web server (servlet engine).

WHY

There are dozens of servlet engines available for servlet deployment. Java Web Server
is one of those engines available. With JSDK2.0 we are getting a servlet engine called
‘servletrunner’ for testing the servlets. But, why not we use the same servlet engine for
deploying the servlets and why should we go for Java Web Server ? Because that servlet
engine (‘servletrunner’) is bare-bones simple. It implements the Servlet API 2.0 and
nothing more. Features like robust session tacking, server-side includes, servlet
chaining, and Java Server Pages have been left out because they are technically not part
of the Servlet API. For these features, we need to use a full-fledged servlet engine like
the Java Web Server or one of its competitors’.

www.JavaEra.com

115

Sun’s Java Web Server is freely available for download at http://www.sun.com/products-
n-solutions/edu/java/. There are number of attractive features included in Java Web
Server. They are as follows:

• Java servlets can be used to replace CGI programs written in other languages.
• Web pages can be dynamically compiled based on server code that is embedded in

HTML files.
• User connections with the Web server can be tracked and managed as interactive

sessions.
• Secure Sockets Layer and X.509 digital certificates can be used to provide privacy,

integrity, and authentication services.
• Templates for the presentation of HTML content are separately managed by the

server.

HOW

Because Java Web Server is built using the Java Server framework, it follows its basic
execution paradigm. An acceptor listens for incoming connection requests on the TCP
ports managed by the server. It hands off accepted connections to connection handlers.
The connection handlers receive HTTP requests from Web server clients and load and
invoke servlets to process the HTTP requests. The following diagram depicts the working
of Java Web server.

When a request for the URL of a servlet is received from a Web browser, Java Web
Server invoked the servlet to process the request. Java Web Server provides the servlet
with all the information it needs to process the request. It also provides a mechanism for
the servlet to send response information back to the Web browser. Servlets can be
preloaded by Java Web Server or loaded on the fly, as they are needed.

Installing and Running the Java Web Server

Java Web Server is available for download from JavaSoft at
http://jserv.javasoft.com/products/java-server/webserver/index.html. Java Web
Server for Windows 95 and NT is distributed as a self-extracting executable file. Run

www.JavaEra.com

116

the file and follow the installation instructions to install Java Web Server on your
system.

Java Web Server comes with extensible documentation that describes its features
and shows how they work. To start Java Web Server, open Command prompt,
change to Java Web Server’s bin directory, and run httpd, as follows:

C:\JavaWebServer1.1\bin>httpd

If we install the Java Web Server as a service under Windows NT (NT Service), it is
automatically started when we reboot our machine. So, we need not start the httpd
service when we have NT Service.

Java Web Server provides Web service on port 8080 as default. This lets us to use
Java Web Server without having to stop our current Web server (if any). Java Web
Server provides an administration applet to administer the server. This server
administration runs on port 9090 as default. We can log into this applet to administer
the server. Here, we will look at the way a servlet is installed in the server to serve
clients.

Deploying and Accessing Servlets

While using Java Web Server, we should put our source code for the servlet in the
server_root/servlets directory (where the server_root is the directory where we
installed our server eg. ‘D:\JavaWebServer1.1’). So, you have to put the source code
in ‘d:\JavaWebServer1.1\servlets’ directory. This is the standard location for servlet
class files. Once we have the source code in the right location, we need to compile it.
The standard javac compiler can do the job. But be sure that we have javax.servlet
and javax.servlet.http packages in our classpath.

Now, we have our compiled code in the servlets directory, we need to do nothing but
start our server and access the servlet. There are several ways to access a servlet.
First one is to access the servlet using a URL with /servlet/ prepended to the servlet’s
class name. Then we can enter the URL in our web browser like this:
‘http://server:8080/servlet/SimpleServlet’. Replace the server with the name of the
server machine or with localhost if the server is on our local machine. If the servlet
were part of a package, it would need to be placed in
server_root/servlets/package/name and referred to with the URL
‘http://server:8080/servlet/package.name.SimpleServlet’.

The second way to refer to a servlet is by its registered name. The registered name
does not have to be the same as its class name, although it can be. Using Java Web
Server we can register our servlets via the Java Server Administration Tool, an
administration applet that manages the server, usually available at http://server:9090/.
Choose to mange the Web Service, go to the Servlets section, and then Add a new
servlet. Here you can specify the name of the new servlet and the class associated
with that name. If we choose the name simple for our SimpleServlet, we can then
access it at the URL ‘http://server:8080/servlet/simple’. Why we are adding a servlet
to the server is that it allows the server to remember things about the servlet and give
it special treatment.

The third way to access a servlet is through a servlet alias. The URL of a servlet
alias looks like any other URL. The only difference is that the server has been told
that the URL should be handled by a particular servlet. For example, we can choose
to have ‘http://server:8080/simple.html’ invoke the SimpleServlet. Using aliases in
this way can help hide a site’s use of servlets; it lets a servlet seamlessly replace an

www.JavaEra.com

117

existing page at any given URL. To create a servlet alias, choose to mange the Web
Service, go to the Setup section, choose Servlet Aliases, and then Add the alias.

5 Servlet Security

The need for security has increased due to immense increase in the Internet’s traffic. Every day
more and more people are transferring their credit card numbers or other confidential
information over the Internet. If these transfers are not secured, they are exposed to just about
any evildoer with a network connection. To get rid of such problems, we can use some
common security methods in servlets. One of the key benefits of servlets is tat they inherit the
security of the server, without any additional effort on your part. They are protected because
they are resources of the server.

There are four security models, which are more common. They are –

• Roll your own
• Basic Authentication
• Digest Authentication
• Secure Sockets Layer (SSL)

We will see each one of them in detail.

Roll your own

This first security model will probably the worst method, but at the same time probably
safe enough if we are protecting non-vital information. Here we use a basic form to query
the user for an ID and password. When we have the request, parse off the ID/password
combination and do a lookup to make sure that the user is approved for access. Once
the user has approval, we will add his ID to his HttpSession object as proof of his
approval for future transactions.

Basic Authentication

Basic Authentication is a challenge/response security model. It is based on the fact that
the client must authenticate itself with a user ID/password combination for each resource
it wants to access. A protected resource could be a directory, a servlet, or even a specific
page. The steps involved in authenticating a client are as follows:

1. The client makes an unauthorized request for a protected resource.
2. The server responds with a challenge to authenticate.
3. The client sends a username/password combination.
4. The server receives the username/password combination and looks in its database

for a match.
5. If the server finds a match, it grants access to the requested resource, else it gives a

message in the form of an error (Unauthorized 401).

We have to use Java Web Server’s Administration tool to protect a resource. We have to
perform several tasks to protect a resource. Following are the steps to be followed:

1. Create a new user: To do this, we must go to the Java Web Service Security screen.
Select the Users option on the tree control. Then choose defaultRealm from the

www.JavaEra.com

118

Realm list. Then click the Add button and enter a username and password in the
resulting Add User dialog box. Click the OK button to add the new user.

2. Add the new user to an access control list (ACL): Access Control Lists allow us to

define a list of users and their permissions; we can apply this list to a resource. To do
this, we need to select Access Control Lists from the tree control on the Web Service
Security page. Make sure that we set the realm to defaultRealm and select
defaultAcl. Now click Add Permission button and select the new user we created.
Now click the OK button.

3. Add a new resource: Select the Resources option from the tree control. This will
bring up the Resources screen. Make sure the realm is set to defaultRealm and click
the Add button. Several options appear on this page. Notice three options for the
security scheme: Basic Authentication, Digest Authentication, and SSL. As we are
currently dealing with Basic Authentication, select Basic Authentication. Make sure
our ACL list is set to defaultAcl and then select the Servlet option. Select a particular
servlet, which we want to protect and click the OK button. Now, our servlet is a
protected resource.

Digest Authentication

Digest Authentication, like Basic Authentication, is based on the challenge/response
model. In fact, digest authentication was created as a direct result of basic
authentication’s shortcomings. The main difference between basic and digest
authentication is that the digest scheme never sends the user’s password across the
network. It instead sends a digest representation of the password.

Two steps are involved in creating a digest value. The first is applying a mathematical
formula to the ID/password combination. The second is to permute the mathematical
calculation with a nonce (a nonce is a server-specific data string that is uniquely
generated each time a protected resource is requested). This makes each request more
secure because the digest is unique to each request.

Secure Sockets Layer (SSL)

The Secure Sockets Layer (SSL) is an authentication protocol used to send encrypted
information over the Internet. It was originally developed by Netscape to transfer secure
information between its Web browser and Web server products. Since this time, it has
been widely adopted and is now one of the most popular methods for sending encrypted
information over the Internet. SSL is implemented as a layer between TCP/IP protocol
and the application layer. The following steps are involved in sending secure messages
using the SSL protocol:

1. A client makes a request for a resource located on a secure site.
2. The server signs its public key with its private key and sends the public key back to

the client.
3. The client takes the returned public key and makes sure it was signed by the

appropriate owner.
4. The client then verifies that the key was signed by an approved certificate authority.
5. The client then creates a key that is encrypted with the public key of the server and

sends the newly constructed key back to the server.
6. The server optionally compresses the information requested by the client.
7. The server encrypts the message using the key created in step 5.

www.JavaEra.com

119

8. The server then transmits the message to the client.
9. The client receives the message.
10. The message is then decrypted using the same key created in step 5.
11. The message is decompressed if necessary and delivered to the client.
12. All further requests restart at step 6, using the same public key.

The above first five steps make the SSL protocol very secure way to send information
across the Internet. The only real drawback of the SSL protocol is the performance
degradation taken during the public key encryption and decryption required during these
first five steps.

